Решение платежной матрицы. Платежная матрица

Хотя некоторые модели, используемые в производственном менеджменте, настолько сложны, что без компьютера обойтись невозможно, концепция моделирования проста.

По определению Шеннона: «МОДЕЛЬ - это представление объекта, системы или идеи в некоторой форме, отличной от самой целостности». Схема организации, к примеру, это и есть модель, представляющая ее структуру.

Главной характеристикой модели можно считать упрощение реальной жизненной ситуации, к которой она применяется. Поскольку форма модели менее сложна, а не относящиеся к делу данные, затуманивающие проблему в реальной жизни, устраняются, модель зачастую повышает способность руководителя к пониманию и разрешению встающих перед ним проблем.

Число всевозможных конкретных моделей науки управления почти так же велико, как и число проблем, для разрешения которых они были разработаны.

Практически любой метод принятия решений, используемый в управлении, можно технически рассматривать как разновидность моделирования. В дополнение к моделированию, имеется ряд методов, способных оказать помощь руководителю в поиске объективно обоснованного решения по выбору из нескольких альтернатив той, которая в наибольшей мере способствует достижению целей. К таким относится Платежная матрица.

Суть каждого принимаемого руководством решения - выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям.

Платежная матрица - это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целей.

По словам Н. Пола Лумбы: «Платеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. Если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицу», как показано в таблице 1.

В самом общем виде матрица означает, что платеж зависит от определенных событий, которые фактически свершаются. Если такое событие или состояние природы не случается на деле, платеж неизбежно будет иным.

Таблица 1. Платежная матрица

В целом платежная матрица полезна, когда:

Имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними.

То, что может случиться, с полной определенностью не известно.

Результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Кроме того, руководитель должен располагать возможностью объективной оценки вероятности релевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определенность. Но также редко он действует в условиях полной неопределенности. Почти во всех случаях принятия решений руководителю приходится оценивать вероятность или возможность события. Из предшествующего рассмотрения напомним, что вероятность варьирует от 1, когда событие определенно произойдет, до 0, когда событие определенно не произойдет. Вероятность можно определить объективно, как поступает игрок в рулетку, ставя на нечетные номера. Выбор ее значения может опираться на прошлые тенденции или субъективную оценку руководителя, который исходит из собственного опыта действий в подобных ситуациях.

Называется игра двух лиц с нулевой суммой, в которой в распоряжении каждого из них имеется конечное множество стратегий. Правила матричной игры определяет платёжная матрица, элементы которой - выигрыши первого игрока, которые являются также проигрышами второго игрока.

Матричная игра является антагонистической игрой. Первый игрок получает максимальный гарантированный (не зависящий от поведения второго игрока) выигрыш, равный цене игры, аналогично, второй игрок добивается минимального гарантированного проигрыша.

Под стратегией понимается совокупность правил (принципов), определяющих выбор варианта действий при каждом личном ходе игрока в зависимости от сложившейся ситуации.

Теперь обо всём по порядку и подробно.

Платёжная матрица, чистые стратегии, цена игры

В матричной игре её правила определяет платёжная матрица .

Рассмотрим игру, в которой имеются два участника: первый игрок и второй игрок. Пусть в распоряжении первого игрока имеется m чистых стратегий, а в распоряжении второго игрока - n чистых стратегий. Поскольку рассматривается игра, естественно, что в этой игре есть выигрыши и есть проигрыши.

В платёжной матрице элементами являются числа, выражающие выигрыши и проигрыши игроков. Выигрыши и проигрыши могут выражаться в пунктах, количестве денег или в других единицах.

Составим платёжную матрицу:

Если первый игрок выбирает i -ю чистую стратегию, а второй игрок - j -ю чистую стратегию, то выигрыш первого игрока составит a ij единиц, а проигрыш второго игрока - также a ij единиц.

Так как a ij + (- a ij ) = 0 , то описанная игра является матричной игрой с нулевой суммой.

Простейшим примером матричной игры может служить бросание монеты. Правила игры следующие. Первый и второй игроки бросают монету и в результате выпадает "орёл" или "решка". Если одновременно выпали "орёл" и "орёл" или "решка" или "решка", то первый игрок выиграет одну единицу, а в других случаях он же проиграет одну единицу (второй игрок выиграет одну единицу). Такие же две стратегии и в распоряжении второго игрока. Соответствующая платёжная матрица будет следующей:

Задача теории игр - определить выбор стратегии первого игрока, которая гарантировала бы ему максимальный средний выигрыш, а также выбор стратегии второго игрока, которая гарантировала бы ему максимальный средний проигрыш.

Как происходит выбор стратегии в матричной игре?

Вновь посмотрим на платёжную матрицу:

Сначала определим величину выигрыша первого игрока, если он использует i -ю чистую стратегию. Если первый игрок использует i -ю чистую стратегию, то логично предположить, что второй игрок будет использовать такую чистую стратегию, благодаря которой выигрыш первого игрока был бы минимальным. В свою очередь первый игрок будет использовать такую чистую стратегию, которая бы обеспечила ему максимальный выигрыш. Исходя из этих условий выигрыш первого игрока, который обозначим как v 1 , называется максиминным выигрышем или нижней ценой игры .

При для этих величин у первого игрока следует поступать следующим образом. Из каждой строки выписать значение минимального элемента и уже из них выбрать максимальный. Таким образом, выигрыш первого игрока будет максимальным из минимальных. Отсюда и название - максиминный выигрыш. Номер строки этого элемента и будет номером чистой стратегии, которую выбирает первый игрок.

Теперь определим величину проигрыша второго игрока, если он использует j -ю стратегию. В этом случае первый игрок использует такую свою чистую стратегию, при которой проигрыш второго игрока был бы максимальным. Второй игрок должен выбрать такую чистую стратегию, при которой его проигрыш был бы минимальным. Проигрыш второго игрока, который обозначим как v 2 , называется минимаксным проигрышем или верхней ценой игры .

При решении задач на цену игры и определение стратегии для определения этих величин у второго игрока следует поступать следующим образом. Из каждого столбца выписать значение максимального элемента и уже из них выбрать минимальный. Таким образом, проигрыш второго игрока будет минимальным из максимальных. Отсюда и название - минимаксный выигрыш. Номер столбца этого элемента и будет номером чистой стратегии, которую выбирает второй игрок. Если второй игрок использует "минимакс", то независимо от выбора стратегии первым игроком, он проиграет не более v 2 единиц.

Пример 1.

.

Наибольший из наименьших элементов строк - 2, это нижняя цена игры, ей соответствует первая строка, следовательно, максиминная стратегия первого игрока первая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует второй столбец, следовательно, минимаксная стратегия второго игрока - вторая.

Теперь, когда мы научились находить нижнюю и верхнюю цену игры, максиминную и минимаксную стратегии, пришло время научиться обозначать эти понятия формально.

Итак, гарантированный выигрыш первого игрока:

Первый игрок должен выбрать чистую стратегию, которая обеспечивала бы ему максимальный из минимальных выигрышей. Этот выигрыш (максимин) обозначается так:

.

Первый игрок использует такую свою чистую стратегию, чтобы проигрыш второго игрока был максимальным. Этот проигрыш обозначается так:

Второй игрок должен выбрать свою чистую стратегию так, чтобы его проигрыш был минимальным. Этот проигрыш (минимакс) обозначается так:

.

Ещё пример из этой же серии.

Пример 2. Дана матричная игра с платёжной матрицей

.

Определить максиминную стратегию первого игрока, минимаксную стратегию второго игрока, нижнюю и верхнюю цену игры.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Наибольший из наименьших элементов строк - 3, это нижняя цена игры, ей соответствует вторая строка, следовательно, максиминная стратегия первого игрока вторая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует первый столбец, следовательно, минимаксная стратегия второго игрока - первая.

Седловая точка в матричных играх

Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.

Таким образом, если , то - оптимальная чистая стратегия первого игрока, а - оптимальная чистая стратегия второго игрока. То есть равные между собой нижняя и верхняя цены игры достигаются на одной и той же паре стратегий.

В этом случае матричная игра имеет решение в чистых стратегиях .

Пример 3. Дана матричная игра с платёжной матрицей

.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Нижняя цена игры совпадает с верхней ценой игры. Таким образом, цена игры равна 5. То есть . Цена игры равна значению седловой точки . Максиминная стратегия первого игрока - вторая чистая стратегия, а минимаксная стратегия второго игрока - третья чистая стратегия. Данная матричная игра имеет решение в чистых стратегиях.

Решить задачу на матричную игру самостоятельно, а затем посмотреть решение

Пример 4. Дана матричная игра с платёжной матрицей

.

Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?

Матричные игры с оптимальной смешанной стратегией

В большинстве случаев матричная игра не имеет седловой точки, поэтому соответствующая матричная игра не имеет решений в чистых стратегиях.

Но она имеет решение в оптимальных смешанных стратегиях. Для их нахождения нужно принять, что игра повторяется достаточное число раз, чтобы на основании опыта можно было предположить, какая стратегия является более предпочтительной. Поэтому решение связывается с понятием вероятности и среднего (математического ожидания). В окончательном же решении есть и аналог седловой точки (то есть равенства нижней и верхней цены игры), и аналог соответствующих им стратегий.

Итак, чтобы чтобы первый игрок получил максимальный средний выигрыш и чтобы средний проигрыш второго игрока был минимальным, чистые стратегии следует использовать с определённой вероятностью.

Если первый игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией первого игрока. Иначе говоря, это "смесь" чистых стратегий. При этом сумма этих вероятностей равна единице:

.

Если второй игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией второго игрока. При этом сумма этих вероятностей равна единице:

.

Если первый игрок использует смешанную стратегию p , а второй игрок - смешанную стратегию q , то имеет смысл математическое ожидание выигрыша первого игрока (проигрыша второго игрока). Чтобы его найти, нужно перемножить вектор смешанной стратении первого игрока (который будет матрицей из одной строки), платёжную матрицу и вектор смешанной стратегии второго игрока (который будет матрицей из одного столбца):

.

Пример 5. Дана матричная игра с платёжной матрицей

.

Определить математическое ожидание выигрыша первого игрока (проигрыша второго игрока), если смешанная стратегия первого игрока , а смешанная стратегия второго игрока .

Решение. Согласно формуле математического ожидания выигрыша первого игрока (проигрыша второго игрока) оно равно произведению вектора смешанной стратегии первого игрока, платёжной матрицы и вектора смешанной стратегии второго игрока:

первого игрока называется такая смешанная стратегия , которая обеспечивала бы ему максимальный средний выигрыш , если игра повторяется достаточное число раз.

Оптимальной смешанной стратегией второго игрока называется такая смешанная стратегия , которая обеспечивала бы ему минимальный средний проигрыш , если игра повторяется достаточное число раз.

По аналогии с обозначениями максимина и минимакса в случах чистых стратегий оптимальные смешанные стратегии обозначаются так (и увязываются с математическим ожиданием, то есть средним, выигрыша первого игрока и проигрыша второго игрока):

,

.

В таком случае для функции E существует седловая точка , что означает равенство .

Для того, чтобы найти оптимальные смешанные стратегии и седловую точку, то есть решить матричную игру в смешанных стратегиях , нужно свести матричную игру к задаче линейного программирования, то есть к оптимизационной задаче, и решить соответствующую задачу линейного программирования.

Сведение матричной игры к задаче линейного программирования

Для того, чтобы решить матричную игру в смешанных стратегиях, нужно составить прямую задачу линейного программирования и двойственную ей задачу . В двойственной задаче расширенная матрица, в которой хранятся коэффициенты при переменных в системе ограничений, свободные члены и коэффициенты при переменных в функции цели, транспонируется. При этом минимуму функции цели исходной задачи ставится в соответствие максимум в двойственной задаче.

Функция цели в прямой задаче линейного программирования:

.

Система ограничений в прямой задаче линейного программирования:

Функция цели в двойственной задаче:

.

Система ограничений в двойственной задаче:

Оптимальный план прямой задачи линейного программирования обозначим

,

а оптимальный план двойственной задачи обозначим

Линейные формы для соответствующих оптимальных планов обозначим и ,

а находить их нужно как суммы соответствующих координат оптимальных планов.

В соответствии определениям предыдущего параграфа и координатами оптимальных планов, в силе следующие смешанные стратегии первого и второго игроков:

.

Математики-теоретики доказали, что цена игры следующим образом выражается через линейные формы оптимальных планов:

,

то есть является величиной, обратной суммам координат оптимальных планов.

Нам, практикам, остаётся лишь использовать эту формулу для решения матричных игр в смешанных стратегиях. Как и формулы для нахождения оптимальных смешанных стратегий соответственно первого и второго игроков:

в которых вторые сомножители - векторы. Оптимальные смешанные стратегии также, как мы уже определили в предыдущем параграфе, являются векторами. Поэтому, умножив число (цену игры) на вектор (с координатами оптимальных планов) получим также вектор.

Пример 6. Дана матричная игра с платёжной матрицей

.

Найти цену игры V и оптимальные смешанные стратегии и .

Решение. Составляем соответствующую данной матричной игре задачу линейного программирования:

Получаем решение прямой задачи:

.

Находим линейную форму оптимальных планов как сумму найденных координат.

Рассмотрим конечную игру, в которой игрок («мы») имеет стратегий, а игрок В («противник») - стратегий. Такая игра называется игрой Будем обозначать наши стратегии стратегии противника - Предположим, что каждая сторона выбрала определенную стратегию: мы выбрали противник - Если игра состоит только из личных ходов, то выбор стратегий однозначно определяет исход игры - наш выигрыш (положительный или отрицательный); обозначим его

Если игра содержит кроме личных случайные ходы, то выигрыш при паре стратегий есть величина случайная, зависящая от исходов всех случайных ходов. В этом случае естественной оценкой ожидаемого выигрыша является математическое ожидание случайного выигрыша. Мы будем обозначать одним и тем же знаком как сам выигрыш (в игре без случайных ходов), так и его математическое ожидание (в игре со случайными ходами).

Предположим, что нам известны значения при каждой паре стратегий. Эти значения можно записать в виде прямоугольной таблицы (матрицы), строки которой соответствуют нашим стратегиям а столбцы - стратегиям противника

Такая таблица называется платежной матрицей или просто матрицей игры.

Заметим, что построение платежной матрицы, особенно для игр с большим количеством стратегий, может само по себе представлять весьма непростую задачу.

Например, для шахматной игры число возможных стратегий так велико, что построение платежной матрицы (даже с привлечением вычислительных машин) является пока практически неосуществимым. Однако в принципе любая конечная игра может быть приведена к матричной форме.

Рассмотрим несколько элементарных примеров игр и построим для них платежные матрицы.

Пример 1. Игра «поиск»,

Имеется два игрока А и В; игрок А прячется, а В его ищет. В распоряжении А имеется два убежища (I и II), любое из которых он может выбрать по своему усмотрению. Условия игры таковы: если В найдет А в том убежище, где А спрятался, то А платит ему штраф 1 руб; если В не найдет А (т. е. будет искать в другом убежище), то он сам должен заплатить А такой же штаф. Требуется построить платежную матрицу.

Решение. Игра состоит всего из двух ходов, оба - личные. У нас (А) две стратегии:

Прятаться в убежище I,

Прятаться в убежище II.

У противника (В) тоже две стратегии:

Искать в убежище I,

Искать в убежище II.

Перед нами игра Ее матрица имеет вид:

На примере Этой игры, как она ни элементарна, можно уяснить себе некоторые важные идеи теории игр.

Предположим сначала, что данная игра выполняется только один раз (играется единственная «партия»). Тогда, очевидно, нет смысла говорить о преимуществах тех или других стратегий - каждый из игроков может с равным основанием принять любую из них. Однако при многократном повторении игры положение меняется.

Действительно, допустим, что мы (игрок А) выбрали какую-то стратегию (скажем, ) и придерживаемся ее. Тогда, уже по результатам первых нескольких партий, противник догадается о нашей стратегии, начнет всегда искать в убежище I и выигрывать. То же будет, если мы выберем стратегию . Нам явно невыгодно придерживаться одной какой-то стратегии; чтобы не оказаться в проигрыше, мы должны чередовать их. Однако, если мы будем чередовать убежища I и II в какой-то определенной последовательности (скажем, через одну партию), противник тоже догадается об этом и ответит наихудшим для нас образом.

Очевидно, надежным способом, гарантирующим нас от верного проигрыша, будет такая организация выбора в каждой партии, когда мы сами его наперед не знаем. Например, можно бросить монету, и, если выпадет герб, выбрать убежище I, а если решка - убежище II.

Печальное положение, в котором оказался игрок А (чтобы не проигрывать, выбирать убежище случайным образом), очевидно, присуще не только ему, но и его противнику В, для которого справедливы все вышеприведенные рассуждения. Оптимальной стратегией каждого оказывается «смешанная» стратегия, в которой две возможные стратегии игрока чередуются случайным образом, с одинаковыми вероятностями.

Таким образом, мы путем интуитивных рассуждений подошли к одному из существенных понятий теории игр - к понятию смешанной стратегии т. е. такой, в которой отдельные «чистые» стретегии чередуются случайным образом с какими-то вероятностями. В данном примере из соображений симметрии ясно, что стратегии должны применяться с одинаковыми вероятностями; в более сложных примерах решение может быть далеко не тривиальным.

Пример 2. Игра «три пальца».

Игроки А и В одновременно и независимо друг от друга показывают один, два или три пальца. Выигрыш или проигрыш решает общее число показанных пальцев. Выигрыш (в рублях) равен этому числу; если оно четное - выигрывает А, а В ему платит; если нечетное - наоборот. Требуется построить платежную матрицу.

Решение. У каждого игрока по три стратегии: показывать один, два или три пальца. Матрица игры 3x3 имеет вид:

Проанализируем ситуацию. Очевидно, на любую нашу стратегию противник может ответить наихудшим для нас образом. Например, если мы выбирем он ответит нам и мы проиграем На стратегию он нам ответит и мы проиграем 5 руб.; на стратегию и мы снова проиграем 5 руб. Очевидно, некоторое преимущество имеет стратегия (при ней проигрыш минимален), но и она для нас явно невыгодна, так как всегда ведет к проигрышу.

Однако попробуем стать на точку зрения второго игрока (В). Его положение тоже не из блестящих. Если он выберет мы ответим ему и он отдаст нам 4 руб; если - мы ответим и снова получим 4 руб; также и на у нас есть ответ приводящий к еще худшему результату: В проиграет 6 руб.

Выходит, игра невыгодна ни тому, ни другому из игроков: каждый из них, выбрав какую-то определенную стратегию, осужден на проигрыш! Это наводит на мысль, что и здесь выход - в применении смешанных стратегий; действительно, так оно и есть, но в данном примере дело обстоит не так просто, как в предыдущем, и чтобы найти оптимальные стратегии сторон, нужно научиться решать игры. В дальнейшем мы вернемся к этому примеру и найдем его решение.

Пример 3. Игра «вооружение и самолет». В нашем распоряжении имеются три вида вооружения: у противника - три вида самолетов: Наша задача - поразить самолет; задача противника - сохранить его непораженным. Наш личный ход - выбор типа вооружения; личный ход противника - выбор самолета для боевых действий. В данной игре имеется еще и случайный ход - применение вооружения. Вооружением самолеты поражаются соответственно с вероятностями 0,5, 0,6, 0,8; вооружением - с вероятностями 0,9, 0,7, 0,8; вооружением вероятностями 0,7, 0,5, 0,6. Построить матрицу игры и проанализировать ситуацию.

Суть каждого принимаемого руководством решения - выбор наилучшей из нескольких альтернатив по конкретным установленным заранее критериям. (В случае если вы захотите вспомнить рассмотрение ограничений и критериев для принятия решений, обратитесь к гл. 6).Платежная матрица - это один из методов статистической теории решений, метод, который может оказать помощь руководителю в выборе одного из нескольких вариантов. Он особенно полезен, когда руководитель должен установить, какая стратегия в наибольшей мере будет способствовать достижению целœей.

По словам Н. Пола Лумбы: ʼʼПлатеж представляет собой денежное вознаграждение или полезность, являющиеся следствием конкретной стратегии в сочетании с конкретными обстоятельствами. В случае если платежи представить в форме таблицы (или матрицы), мы получаем платежную матрицуʼʼ, как показано на рис. 8.4. Слова ʼʼв сочетании с конкретными обстоятельствамиʼʼ очень важны, чтобы понять, когда можно использовать платежную матрицу и оценить, когда решение, принятое на ее основе, скорее всœего будет надежным. В самом общем виде матрица означает, что платеж зависит от определœенных событий, которые фактически свершаются. В случае если такое событие или состояние природы не случается на делœе, платеж неизбежно будет иным.

В целом платежная матрица полезна, когда:

1. Имеется разумно ограниченное число альтернатив или вариантов стратегии для выбора между ними.

2. То, что может случиться, с полной определœенностью не известно.

3. Результаты принятого решения зависят от того, какая именно выбрана альтернатива и какие события в действительности имеют место.

Вместе с тем, руководитель должен располагать возможностью объективной оценки вероятности релœевантных событий и расчета ожидаемого значения такой вероятности. Руководитель редко имеет полную определœенность. Но также редко он действует в условиях полной неопределœенности. Почти во всœех случаях принятия решений руководителю приходится оценивать вероятность или возможность события. Из предшествующего рассмотрения напомним, что вероятность варьирует от 1, когда событие определœенно произойдет, до 0, когда событие определœенно не произойдет. Вероятность можно определить объективно, как поступает игрок в рулетку, ставя на нечетные номера. Выбор ее значения может опираться на прошлые тенденции или субъективную оценку руководителя, который исходит из собственного опыта действий в подобных ситуациях.

В случае если вероятность не была принята в расчет, решение всœегда будет соскальзывать в направлении наиболее оптимистических последствий. К примеру, в случае если исходить из того, что инвесторы на удачной кинокартинœе могут иметь 500% на инвестированный капитал, а при вложении в торговую сеть - в самом благоприятном варианте всœего 20%, то решение всœегда должно быть в пользу кинопроизводства. При этом если взять в расчет, что вероятность большого успеха кинофильма весьма невысока, капиталовложения в магазины становятся более привлекательными, поскольку вероятность получения указанных 20% очень значительна. В случае если взять более простой пример, то выплаты при ставках в заезде на длинную дистанцию на скачках выше, поскольку выше вероятность, что не выиграешь вообще ничего.

Вероятность прямо влияет на определœение ожидаемого значения - центральной концепции платежной матрицы. Ожидаемое значение альтернативы или варианта стратегии - это сумма возможных значений, умноженных на соответствующие вероятности. К примеру, в случае если вы считаете, что вложение средств (как стратегия действий) в киоск для торговли мороженым с вероятностью 0,5 обеспечит вам годовую прибыль 5000 долл., с вероятностью 0,2 - 10 000 долл. и с вероятностью 0,3 - 3000 долл., то ожидаемое значение составит:

5000 (0,5) + 10 000 (0,2) + 3000 (0,3) = 5400 долл.

Определив ожидаемое значение каждой альтернативы и расположив результаты в виде матрицы, руководитель без труда может установить, какой выбор наиболее привлекателœен при заданных критериях. Он будет, конечно, соответствовать наивысшему ожидаемому значению. Исследования показывают: когда установлены точные значения вероятности, методы дерева решений и платежной матрицы обеспечивают принятие более качественных решений, чем традиционные подходы.

Рис. 8.5.Дерево решений.

Платежная матрица - понятие и виды. Классификация и особенности категории "Платежная матрица" 2017, 2018.

  • -

    Все решения, которые принимаются на основе платежной матрицы без учета численных значений вероятностей исхода событий, будут "оптимистическими" решениями, т.к. они ориентируются на наиболее благоприятный исход событий. Такой подход можно признать оправданным... .


  • - Платежная матрица с учетом вероятностей исходов

    Рис. 7.1. Платежная матрица без учета вероятностей исходов событий Платежная матрица без учета вероятностей исходов Метод платежной матрицы МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ Этап 9. Проведение анализа... .


  • - Платежная матрица без учета вероятностей исходов

    Метод платежной матрицы МЕТОДЫ ПРИНЯТИЯ РЕШЕНИЙ Этап 8. Рис. 6.2. Диаграмма влияния, связывающая базовые проблемы. Данная диаграмма учитывает только отрицательные взаимосвязи, т.к. она предназначена для анализа... .


  • - Платежная матрица

    Рассмотрим игру, в которой игрок имеет стратегий, а игрок («противник») - стратегий. Такая игра называется игрой. Наши стратегии будем обозначать, противника - . Предположим, что каждая сторона выбрала определенную стратегию: мы выбрали, противник. Выбор стратегии... .


  • - Парная игра с нулевой суммой. Платежная матрица.

    Рассмотрим парную конечную игру с нулевой суммой с игрокам А и В, которые имеют конечное число стратегий соответственно А1, А2, ... Аm и В1, В2, ... Вn. Такая игра называется игрой mxn. Исход каждой партии завершается выигрышем одного из игроков. Обозначим aij- выигрыш игрока А, если...

  • В данной матрице элементы величины α i и β j соответственно минимальные значения элементов a ij по строкам и максимальные по столбцам.

    Построение платежной матрицы – наиболее трудоемкий этап подготовки принятия решения. Ошибки в платежной матрице не могут быть компенсированы никакими вычислительными методами и приведут к неверному итоговому результату.

    Возможен и другой способ задания матрицы игры с природой – в виде матрицы рисков R, или матрицы потерь (упущенных возможностей) . Величина риска – это размер платы за отсутствие информации о состоянии среды. Матрица R может быть построена непосредственно из условий задачи или на основе матрицы выигрышей.

    Риском r ij игрока А при использовании им стратегии А i , а игроком В – стратегии В j называют разность между выигрышем, который игрок А получил бы, если бы знал, что игрок В выберет стратегию В j , и выигрышем, который игрок получил бы, не имея этой информации. Зная стратегию игрока В, игрок А выбирает вариант действий, при котором его выигрыш максимален, то есть r ij = β j – a ij , где при заданномj .

    Рассмотрим способ построения матрицы рисков на примере (табл. 8.2, 8.3).

    Таблица 8.2

    Пример платежной матрицы

    α i

    β j

    Согласно выведенным определениям r ij и β j получаем матрицу рисков.

    Таблица 8.3

    Матрица рисков

    Независимо от вида матрицы игры требуется выбрать такую стратегию игрока, которая была бы наиболее выгодной по сравнению с другими.

    В условиях неопределенности для определения наилучших решений могут быть использованы следующие критерии:

    1. Критерий максимакса (критерий крайнего оптимизма) . Позволяет определить стратегию, максимизирующую выигрыш игрока (М ):

    .

    Очевидно, что для матрицы выигрышей, представленной в табл. 8.2 , наилучшим решением будет А 1 , при котором достигается максимальный выигрыш – 9.

    Следует отметить, что ситуации, требующие применения такого критерия, в экономике в общем нередки, и пользуются им не только безоглядные оптимисты, но и игроки, поставленные в безвыходное положение, когда они вынуждены руководствоваться принципом "или пан, или пропал".

    2. Критерий Вальда (критерий максимина) . Данный критерий позволяет максимизировать минимально возможный выигрыш:

    .

    Для стратегии А 1
    ;

    Для стратегии А 2
    ;

    Для стратегии А 3
    .

    Соответственно W = 3, что соответствует стратегии А 2 игрока А.

    Особенность максиминного критерия в том, что он ориентирует на выбор наиболее безопасного варианта. Это своего рода критерий для осторожного человека. Им главным образом следует пользоваться в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях. Он имеет в качестве недостатка неубедительность использования в разных условиях окружающей обстановки. Однако в тех случаях, когда действия направлены на удовлетворение жизненно важных потребностей и необходимо обеспечить успех при любых возможных условиях, максиминный критерий в наибольшей степени соответствует существу задачи. Так или иначе, выбор такой стратегии определяется отношением игрока к риску.

    3. Критерий Сэвиджа (критерий минимакса) . Позволяет минимизировать максимальные потери. Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрыша, а матрицей рисков:

    Для матрицы рисков, представленной в табл. 8.3,

    Для стратегии А 1
    ;

    Для стратегии А 2
    ;

    Для стратегии А 3
    .

    Соответственно, S = 4, что соответствует стратегии А 1 игрока А.

    Слабость данного критерия заключается в допущении, что результаты выбираются разумным противником, интересы которого прямо противоположны нашим собственным, то есть мы полагаем следующее: если применяемые правила принятия решений позволяют противнику извлечь какое-либо преимущество, то он обязательно это сделает. Однако если исключить вполне определенные условия конкурентной борьбы, то столь пессимистические допущения нельзя оправдать. Действительно, ведь результаты могут выбираться нерациональным "противником", а цели "противника" не обязательно полностью противоречат нашим собственным.

      Критерий Гурвица (критерий обобщенного максимина или критерий пессимизма – оптимизма) . Был предложен с учетом недостатков указанных выше критериев. При выборе решения он рекомендует руководствоваться неким средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Критерий имеет следующий вид:

    ,

    где р – коэффициент пессимизма (
    ).

    При р = 0 критерий Гурвица совпадает с максимаксным критерием, а при р = 1 – с критерием Вальда.

    Покажем процедуру применения данного критерия для платежной матрицы при р = 0,4:

    Для стратегии А 1
    ;

    Для стратегии А 2
    ;

    Для стратегии А 3 .

    Тогда Н А = 6, что соответствует стратегии А 2 (для сравнения, при р = 0,3, оптимальной будет являться стратегия А 1).

    Применительно к матрице рисков критерий Гурвица выглядит следующим образом:

    ,

      Критерий Лапласа . В его основу положено предположение, что поскольку о вероятностях получения того или иного результата ничего неизвестно, то можно полагать их равновероятными. Поэтому оценка каждой i -й стратегии производится как среднее арифметическое в i -й строке (L):

    Для представленной выше платежной матрицы:

    Для стратегии А 1
    ;

    Для стратегии А 2
    ;

    Для стратегии А 3
    .

    Соответственно, L = 4,75, что соответствует стратегии А 1 .

    В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию. Например, в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии.

    Попытка сформулировать критерий оценки возможных решений в условиях неопределенности отражает стремление сделать более наглядными преимущества и недостатки каждого варианта действий в различной обстановке.

    Как видно из представленных выше расчетов, использование различных критериев при решении одной задачи, как правило, приводит к получению неодинаковых результатов. Существует два подхода к выбору критериев для решения задач в условиях неопределенности. Первый из них – это разработка новых критериев или требований для выбора критерия принятия решения. Второй путь заключается в использовании любой, пусть самой скудной, информации о вероятностях реализации различных условий внешней среды (различных результатов, получаемых при реализации той или иной стратегии) или в проведении экспериментов с целью получения оценок этих вероятностей. Тем самым неопределенная задача становится вероятностной.

    Оба пути трудоемки и, как правило, трудновыполнимы на практике, однако предпочтительнее все же второй путь. Первый путь приводит к поискам новых критериев для выбора лучшего из числа известных, затем – к поискам критериев для выбора из числа рассматриваемых и т. д. Иными словами, не существует критерия принятия решения, не основанного на оценках вероятностей, который удовлетворял бы определенным обоснованным требованиям "хорошего" критерия.

    Ни один из предложенных методов выбора решений не является универсальным, способным удовлетворить любого ЛПР. Люди по-разному относятся к элементам риска, содержащимся в каждом решении. Один склонен рисковать в надежде добиться большего успеха, другой предпочитает всегда действовать осторожно. Разумеется, размеры риска, допускаемые в решении, зависят не только от характера ЛПР, но и от содержания целей.

    Ученые считают, что правило минимаксных (осторожных) решений интуитивно применяется большинством руководителей в повседневной практике, в то время как стремление к максимуму ожидаемых результатов могло бы быть более эффективным для организации. Так, многие руководители предпочитают иметь на складах предприятия некоторые излишки запасов материалов, чем подвергаться риску возникновения простоев в производстве из-за перебоев в поставках.

    В платежной матрице игры существует элемент, являющийся одновременно минимальным в своей строке и максимальным в своем столбце. Такой элемент называют седловой точкой. Седловая точка в игре имеет место тогда, когда наблюдается равенство α i = β j . При этом значение α i = β j V называют чистой ценой игры. В этом случае решение игры (совокупность оптимальных стратегий игроков) обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии. Поэтому для игры с седловой точкой минимаксные стратегии обладают устойчивостью.

    В целом теория игр может рассматриваться как своеобразный методический инструмент для анализа ситуаций, характеризующихся конфликтом сторон и неопределенностью.

    Однако в связи с отмеченными выше существенными ограничениями, лежащими в основе формализации игры, далеко не все реальные ситуации допускают такую формализацию, а полученные выводы в реальных ситуациях выглядят зачастую банальными (например, направить все ресурсы на наиболее эффективные операции) и могут требовать корректировки с позиций здравого смысла, диверсификации видов деятельности и т.д. Это снижает практическую эффективность игрового подхода в реальной деятельности.