Матричные игры: примеры решения задач. Понятие об игровых моделях

Называется игра двух лиц с нулевой суммой, в которой в распоряжении каждого из них имеется конечное множество стратегий. Правила матричной игры определяет платёжная матрица, элементы которой - выигрыши первого игрока, которые являются также проигрышами второго игрока.

Матричная игра является антагонистической игрой. Первый игрок получает максимальный гарантированный (не зависящий от поведения второго игрока) выигрыш, равный цене игры, аналогично, второй игрок добивается минимального гарантированного проигрыша.

Под стратегией понимается совокупность правил (принципов), определяющих выбор варианта действий при каждом личном ходе игрока в зависимости от сложившейся ситуации.

Теперь обо всём по порядку и подробно.

Платёжная матрица, чистые стратегии, цена игры

В матричной игре её правила определяет платёжная матрица .

Рассмотрим игру, в которой имеются два участника: первый игрок и второй игрок. Пусть в распоряжении первого игрока имеется m чистых стратегий, а в распоряжении второго игрока - n чистых стратегий. Поскольку рассматривается игра, естественно, что в этой игре есть выигрыши и есть проигрыши.

В платёжной матрице элементами являются числа, выражающие выигрыши и проигрыши игроков. Выигрыши и проигрыши могут выражаться в пунктах, количестве денег или в других единицах.

Составим платёжную матрицу:

Если первый игрок выбирает i -ю чистую стратегию, а второй игрок - j -ю чистую стратегию, то выигрыш первого игрока составит a ij единиц, а проигрыш второго игрока - также a ij единиц.

Так как a ij + (- a ij ) = 0 , то описанная игра является матричной игрой с нулевой суммой.

Простейшим примером матричной игры может служить бросание монеты. Правила игры следующие. Первый и второй игроки бросают монету и в результате выпадает "орёл" или "решка". Если одновременно выпали "орёл" и "орёл" или "решка" или "решка", то первый игрок выиграет одну единицу, а в других случаях он же проиграет одну единицу (второй игрок выиграет одну единицу). Такие же две стратегии и в распоряжении второго игрока. Соответствующая платёжная матрица будет следующей:

Задача теории игр - определить выбор стратегии первого игрока, которая гарантировала бы ему максимальный средний выигрыш, а также выбор стратегии второго игрока, которая гарантировала бы ему максимальный средний проигрыш.

Как происходит выбор стратегии в матричной игре?

Вновь посмотрим на платёжную матрицу:

Сначала определим величину выигрыша первого игрока, если он использует i -ю чистую стратегию. Если первый игрок использует i -ю чистую стратегию, то логично предположить, что второй игрок будет использовать такую чистую стратегию, благодаря которой выигрыш первого игрока был бы минимальным. В свою очередь первый игрок будет использовать такую чистую стратегию, которая бы обеспечила ему максимальный выигрыш. Исходя из этих условий выигрыш первого игрока, который обозначим как v 1 , называется максиминным выигрышем или нижней ценой игры .

При для этих величин у первого игрока следует поступать следующим образом. Из каждой строки выписать значение минимального элемента и уже из них выбрать максимальный. Таким образом, выигрыш первого игрока будет максимальным из минимальных. Отсюда и название - максиминный выигрыш. Номер строки этого элемента и будет номером чистой стратегии, которую выбирает первый игрок.

Теперь определим величину проигрыша второго игрока, если он использует j -ю стратегию. В этом случае первый игрок использует такую свою чистую стратегию, при которой проигрыш второго игрока был бы максимальным. Второй игрок должен выбрать такую чистую стратегию, при которой его проигрыш был бы минимальным. Проигрыш второго игрока, который обозначим как v 2 , называется минимаксным проигрышем или верхней ценой игры .

При решении задач на цену игры и определение стратегии для определения этих величин у второго игрока следует поступать следующим образом. Из каждого столбца выписать значение максимального элемента и уже из них выбрать минимальный. Таким образом, проигрыш второго игрока будет минимальным из максимальных. Отсюда и название - минимаксный выигрыш. Номер столбца этого элемента и будет номером чистой стратегии, которую выбирает второй игрок. Если второй игрок использует "минимакс", то независимо от выбора стратегии первым игроком, он проиграет не более v 2 единиц.

Пример 1.

.

Наибольший из наименьших элементов строк - 2, это нижняя цена игры, ей соответствует первая строка, следовательно, максиминная стратегия первого игрока первая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует второй столбец, следовательно, минимаксная стратегия второго игрока - вторая.

Теперь, когда мы научились находить нижнюю и верхнюю цену игры, максиминную и минимаксную стратегии, пришло время научиться обозначать эти понятия формально.

Итак, гарантированный выигрыш первого игрока:

Первый игрок должен выбрать чистую стратегию, которая обеспечивала бы ему максимальный из минимальных выигрышей. Этот выигрыш (максимин) обозначается так:

.

Первый игрок использует такую свою чистую стратегию, чтобы проигрыш второго игрока был максимальным. Этот проигрыш обозначается так:

Второй игрок должен выбрать свою чистую стратегию так, чтобы его проигрыш был минимальным. Этот проигрыш (минимакс) обозначается так:

.

Ещё пример из этой же серии.

Пример 2. Дана матричная игра с платёжной матрицей

.

Определить максиминную стратегию первого игрока, минимаксную стратегию второго игрока, нижнюю и верхнюю цену игры.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Наибольший из наименьших элементов строк - 3, это нижняя цена игры, ей соответствует вторая строка, следовательно, максиминная стратегия первого игрока вторая. Наименьший из наибольших элементов столбцов - 5, это верхняя цена игры, ей соответствует первый столбец, следовательно, минимаксная стратегия второго игрока - первая.

Седловая точка в матричных играх

Если верхняя и нижняя цена игры одинаковая, то считается, что матричная игра имеет седловую точку. Верно и обратное утверждение: если матричная игра имеет седловую точку, то верхняя и нижняя цены матричной игры одинаковы. Соответствующий элемент одновременно является наименьшим в строке и наибольшим в столбце и равен цене игры.

Таким образом, если , то - оптимальная чистая стратегия первого игрока, а - оптимальная чистая стратегия второго игрока. То есть равные между собой нижняя и верхняя цены игры достигаются на одной и той же паре стратегий.

В этом случае матричная игра имеет решение в чистых стратегиях .

Пример 3. Дана матричная игра с платёжной матрицей

.

Решение. Справа от платёжной матрицы выпишем наименьшие элементы в её строках и отметим максимальный из них, а снизу от матрицы - наибольшие элементы в столбцах и выберем минимальный из них:

Нижняя цена игры совпадает с верхней ценой игры. Таким образом, цена игры равна 5. То есть . Цена игры равна значению седловой точки . Максиминная стратегия первого игрока - вторая чистая стратегия, а минимаксная стратегия второго игрока - третья чистая стратегия. Данная матричная игра имеет решение в чистых стратегиях.

Решить задачу на матричную игру самостоятельно, а затем посмотреть решение

Пример 4. Дана матричная игра с платёжной матрицей

.

Найти нижнюю и верхнюю цену игры. Имеет ли данная матричная игра седловую точку?

Матричные игры с оптимальной смешанной стратегией

В большинстве случаев матричная игра не имеет седловой точки, поэтому соответствующая матричная игра не имеет решений в чистых стратегиях.

Но она имеет решение в оптимальных смешанных стратегиях. Для их нахождения нужно принять, что игра повторяется достаточное число раз, чтобы на основании опыта можно было предположить, какая стратегия является более предпочтительной. Поэтому решение связывается с понятием вероятности и среднего (математического ожидания). В окончательном же решении есть и аналог седловой точки (то есть равенства нижней и верхней цены игры), и аналог соответствующих им стратегий.

Итак, чтобы чтобы первый игрок получил максимальный средний выигрыш и чтобы средний проигрыш второго игрока был минимальным, чистые стратегии следует использовать с определённой вероятностью.

Если первый игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией первого игрока. Иначе говоря, это "смесь" чистых стратегий. При этом сумма этих вероятностей равна единице:

.

Если второй игрок использует чистые стратегии с вероятностями , то вектор называется смешанной стратегией второго игрока. При этом сумма этих вероятностей равна единице:

.

Если первый игрок использует смешанную стратегию p , а второй игрок - смешанную стратегию q , то имеет смысл математическое ожидание выигрыша первого игрока (проигрыша второго игрока). Чтобы его найти, нужно перемножить вектор смешанной стратении первого игрока (который будет матрицей из одной строки), платёжную матрицу и вектор смешанной стратегии второго игрока (который будет матрицей из одного столбца):

.

Пример 5. Дана матричная игра с платёжной матрицей

.

Определить математическое ожидание выигрыша первого игрока (проигрыша второго игрока), если смешанная стратегия первого игрока , а смешанная стратегия второго игрока .

Решение. Согласно формуле математического ожидания выигрыша первого игрока (проигрыша второго игрока) оно равно произведению вектора смешанной стратегии первого игрока, платёжной матрицы и вектора смешанной стратегии второго игрока:

первого игрока называется такая смешанная стратегия , которая обеспечивала бы ему максимальный средний выигрыш , если игра повторяется достаточное число раз.

Оптимальной смешанной стратегией второго игрока называется такая смешанная стратегия , которая обеспечивала бы ему минимальный средний проигрыш , если игра повторяется достаточное число раз.

По аналогии с обозначениями максимина и минимакса в случах чистых стратегий оптимальные смешанные стратегии обозначаются так (и увязываются с математическим ожиданием, то есть средним, выигрыша первого игрока и проигрыша второго игрока):

,

.

В таком случае для функции E существует седловая точка , что означает равенство .

Для того, чтобы найти оптимальные смешанные стратегии и седловую точку, то есть решить матричную игру в смешанных стратегиях , нужно свести матричную игру к задаче линейного программирования, то есть к оптимизационной задаче, и решить соответствующую задачу линейного программирования.

Сведение матричной игры к задаче линейного программирования

Для того, чтобы решить матричную игру в смешанных стратегиях, нужно составить прямую задачу линейного программирования и двойственную ей задачу . В двойственной задаче расширенная матрица, в которой хранятся коэффициенты при переменных в системе ограничений, свободные члены и коэффициенты при переменных в функции цели, транспонируется. При этом минимуму функции цели исходной задачи ставится в соответствие максимум в двойственной задаче.

Функция цели в прямой задаче линейного программирования:

.

Система ограничений в прямой задаче линейного программирования:

Функция цели в двойственной задаче:

.

Система ограничений в двойственной задаче:

Оптимальный план прямой задачи линейного программирования обозначим

,

а оптимальный план двойственной задачи обозначим

Линейные формы для соответствующих оптимальных планов обозначим и ,

а находить их нужно как суммы соответствующих координат оптимальных планов.

В соответствии определениям предыдущего параграфа и координатами оптимальных планов, в силе следующие смешанные стратегии первого и второго игроков:

.

Математики-теоретики доказали, что цена игры следующим образом выражается через линейные формы оптимальных планов:

,

то есть является величиной, обратной суммам координат оптимальных планов.

Нам, практикам, остаётся лишь использовать эту формулу для решения матричных игр в смешанных стратегиях. Как и формулы для нахождения оптимальных смешанных стратегий соответственно первого и второго игроков:

в которых вторые сомножители - векторы. Оптимальные смешанные стратегии также, как мы уже определили в предыдущем параграфе, являются векторами. Поэтому, умножив число (цену игры) на вектор (с координатами оптимальных планов) получим также вектор.

Пример 6. Дана матричная игра с платёжной матрицей

.

Найти цену игры V и оптимальные смешанные стратегии и .

Решение. Составляем соответствующую данной матричной игре задачу линейного программирования:

Получаем решение прямой задачи:

.

Находим линейную форму оптимальных планов как сумму найденных координат.

Рассмотрим парную конечную игру. Пусть игрок А располагает m личными стратегиями, которые обозначим А 1 , А 2 , …,А m . Пусть у игрока В имеется n личных стратегий, обозначим их В 1 2 , …, В n . Говорят, что игра имен размерность mn . В результате выбора игроками любой пары стратегий

A i и B i (I = 1, 2, …, m ; j = 1, 2, …, n )

однозначно определяется исход игры, т. е. выигрыш a ij игрока A (положительный или отрицательный) и проигрыш (- a ij ) игрока В . Предположим, что значения a ij известны для любой пары стратегий (Ai, Bj ). Матрица Р = (а ij ), i = 1, 2, …, m ; j = 1, 2, …, n , элементами которой являются выигрыши, соответствующие стратегиям A i и B j , называется платёжной матрицей или матрицей игры . Общий вид такой матрицы представлен в табл. 1. Строки этой таблицы соответствуют стратегиям игрока А , а столбцы - стратегиям игрока В .

Составим платёжную матрицу для следующей игры.

Таблица 1

А j B i

a 1n

a 2n

a m 1

a mn

1. Игра «поиск».

Игрок А может спрятаться в одном из убежищ (I и II); игрок В ищет игрока А , и если найдёт, то получает штраф 1 ден. ед. от А , в противном случае платит игроку А 1 ден. ед. Необходимо построить платёжную матрицу игры.

Решение. Для составления платёжной матрицы следует проанализировать поведение каждого из игроков. Игрок А может спрятаться в убежище I - обозначим эту стратегию через А 1 или в убежище II - стратегия А 2 .

Игрок В может искать первого игрока в убежище I - стратегия В 1 , либо в убежище II - стратегия В 2 . Если игрок А находится в убежище I и там его обнаруживает игрок В , т.е. осуществляется пара стратегий (А 1 , В 1), то игрок А платит штраф, т.е. а 11 = -1. аналогично получаем а 22 = -1 (А 2 , В 2). Очевидно, что стратегии (А 1 , В 1) и (А 2 , В 2) дают игроку А выигрыш 1, поэтому а 12 = а 21 = 1.

Начало условия задачи; - окончание решения задачи.

Таким образом, для игры «поиск» размера 2 2 получаем платежную матрицу

Рассмотрим игру m n с матрицей Р = (а ij ), i = 1, 2, …, m ; j = 1, 2, …, n и определим наилучшую среди стратегий А 1 , А 2 , …, А m . Выбирая стратегию A i , игрок А должен рассчитывать, что игрок В ответит на неё той из стратегий B j , для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А ).

Обозначим через а i наименьший выигрыш игрока А при выборе им стратегии A i для всех возможных стратегий игрока В (наименьшее число в i -ой строке платёжной матрицы), т.е.

а ij = i . (1.1)

среди всех чисел? i (i = 1, 2, …, m ) выберем наибольшее: ? = ? i . Назовем? нижней ценой игры , или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

? = a ij . (1.2)

Стратегия, соответствующая максимину, называется максиминной стратегией. Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для А . Обозначим

? j = a ij (1.3)

Среди всех чисел? j выберем наименьшее? = ? j и назовем? верхней ценой игры или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В . Следовательно,

? = a ij . (1.4)

Стратегия, соответствующая минимаксу, называется минимаксной стратегией .

Принцип, диктующий игрокам выбор наиболее «осторожных» минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника. Определим нижнюю и верхнюю цены игры и соответствующие стратегии в задаче 1. Рассмотрим платёжную матрицу

из задачи 1. При выборе стратегии А 1 (первая строка матрицы) минимальный выигрыш равен? 1 = min(-1;1) = -1 и соответствует стратегии? 1 игрока В . При выборе стратегии А 2 (вторая строка матрицы) минимальный выигрыш равен? 2 = min(1;-1) = -1, он достигается при стратегии В 2 .

Гарантируя себе максимальный выигрыш при любой стратегии игрока В , т.е. нижнюю цену игры? = max(? 1 , ? 2) = max(-1;-1) = -1, игрок А может выбирать любую стратегию: А 1 или А 2 , т.е. любая его стратегия является максиминной.

Выбирая стратегию В 1 (столбец 1), игрок В понимает, что игрок А ответит стратегией А 2 , чтобы максимизировать свой выигрыш (проигрыш В ). Следовательно, максимальный проигрыш игрока В при выборе им стратегии В 1 равен? 1 = max(-1;1) = 1.

Аналогично максимальный проигрыш игрока В (выигрыш А ) при выборе им стратегии В 2 (столбец 2) равен? 2 = max(1;-1) = 1.

Таким образом, при любой стратегии игрока А гарантированный минимальный проигрыш игрока В равен? = min (? 1 ; ? 2) = min(1;1) = 1 - верхней цене игры.

Любая стратегия игрока В является минимаксной. Дополнив табл. 1 строкой? j и столбцом? i , получим табл. 2. На пресечении дополнительных строки и столбца будем записывать верхнюю и нижнюю цены игр.

Таблица 2.

А j B i

? i

? j

В задаче 1 , рассмотренной выше, верхняя и нижняя цены игры различны? ? ?.

Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры? = ? = v называется чистой ценой игры , или ценой игры . Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями , а их совокупность - оптимальным решением , или решением игры. В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В ) выигрыш v, а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока А ) проигрыша v. Говорят, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклонятся от своей оптимальной стратегии.

Пара чистых стратегий А j и B i даёт оптимальное решение игры тогда и только тогда, когда соответствующий элемент a ij является одновременно наибольшим в своём столбце и наименьшим в своей строке. Такая ситуация, если оан существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз - в другом).

Обозначим А * и B * - пару чистых стратегий, на которых достигается решение игры в задаче с седловой точкой. Введём функцию выигрыша первого игрока на каждой паре стратегий: Р (А i , B j ) = a ij . Тогда из условия оптимальности в седловой точке выполняется двойное неравенство: Р (А i , B *) ? Р (А * , B * ) ? Р (А * , B j ), которое справедливо для всех i = 1, …, m ; j = 1, …, n . действительно, выбор стратегии А * первым игроком при оптимальной стратегии B * второго игрока максимизирует минимальный возможный выигрыш: Р (А * , B * ) ? Р (А * , B ).

2. определить нижнюю и верхнюю цену игры, заданной платёжной матрицей

Р = 0,9 0,7 0,8

Таблица 3.

А i B j

Имеет ли игра седловую точку?

Решение. Все расчёты удобно проводить в таблице, к которой, кроме матрицы Р, введены столбец? i и строка? j (табл. 3). Анализируя строки матрицы (стратегии игрока А ), заполняем столбец? i : ? 1 = 0,5, ? 2 = 0,7, ? 3 = 0,6 - минимальные числа в строках 1, 2, 3. Аналогично? 1 = 0,9, ? 2 = 0,7, ? 3 = 0,8 - максимальные числа в столбцах 1, 2, 3 соответственно.

Нижняя цена игры? = ? i = max (0,5; 0,7; 0,6) = 0,7 (наибольшее число в столбце ? i ) и верхняя цена игры? = ? j = min(0,9; 0,7; 0,8) = 0,7 (наименьшее число в строке? j ). Эти значения равны, т.е. ? = ?, и достигаются на одной и той же паре стратегий (А 2 , В 2). Следовательно, игра имеет седловую точку (А 2 , В 2) и цена игры = 0,7.

Стратегией игрока называется план, по которому он совершает выбор в любой возможной ситуации и при любой возможной фактической информации. Естественно, что игрок принимает решения по ходу игры. Однако теоретически можно предположить, что все эти решения приняты игроком заранее. Тогда совокупность этих решений составляет его стратегию. В зависимости от числа возможных стратегий игры делятся на конечные и бесконечные. Задачей теории игр является выработка рекомендаций для игроков, т. е. определение для них оптимальной стратегии. Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средней выигрыш.

Простейший вид стратегической игры - игра двух лиц с нулевой суммой (сумма выигрышей сторон равна нулю). Игра состоит из двух ходов: игрок А выбирает одну из своих возможных стратегий Ai (i = 1, 2, m), а игрок В выбирает стратегию Вj (j = 1, 2, ., n), причем каждый выбор производится при полном незнании выбору другого игрока.

Цель игрока А - максимизировать функцию φ (Ai, Bj), в свою очередь, цель игрока В - минимизировать эту же функцию. Каждый из игроков может выбирать одну из переменных, от которых зависит значение функции. Если игрок А выбирает некоторую из стратегий Ai, то это само по себе не может влиять да значение функции φ (Ai, Bj).

Влияние Ai, на величину значения φ (Ai, Bj) является неопределенным; определенность имеет место только после выбора, исходя из принципа минимизации φ (Ai, Bj), другим игроком переменной Bj. При этом Bj определяется другим игроком. Пусть φ (Ai, Bj)= aij. Составим матрицу А:

Строки матрицы соответствуют стратегиям Ai, столбцы - стратегиям Bj. Матрица А называется платежной или матрицей игры. Элемент aij матрицы - выигрыш игрока А, если он выбрал стратегию Ai, а игрок В выбрал стратегию Bj.

Пусть игрок А выбирает некоторую стратегию Ai ; тогда в наихудшем случае (например, если выбор станет известным игроку В) он получит выигрыш, равный min aij. Предвидя такую возможность, игрок А должен выбрать такую стратегию, чтобы максимизировать свой минимальный выигрыш a:

а = max min aij

Величина а - гарантированный выигрыш игрока А - называется нижней ценой игры. Стратегия Аi0, обеспечивающая получение а, называется максиминной.

Игрок В, выбирая стратегию, исходит из следующего принципа: при выборе некоторой стратегии Вj его проигрыш не превысит максимального из значений элементов j-го столбца матрицы, т.е. меньше или равен max aij

Рассматривая множество max aij для различных значений j, игрок В, естественно выберет такое значение j, при котором его максимальный проигрыш β минимизируется:

β = min miax aij

Величина β называется верхней ценой игры, а соответствующая выигрышу β стратегия Вj0 - минимаксной.

Фактический выигрыш игрока А при разумных действиях партнеров ограничен нижней и верхней ценой игры. Если же эти выражения равны, т.е.

Лекция 9. Понятие об игровых моделях. Платежная матрица.

§ 6 ЭЛЕМЕНТЫ ТЕОРИИ ИГР

6.1 Понятие об игровых моделях.

Математи­ческая модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, – игроками, а исход конфликта – выигрышем .

Для каждой формализованной игры вводятся правила , т.е. система условий, определяющая: 1) варианты действий игро­ков; 2) объем информации каждого игрока о поведении партне­ров; 3) выигрыш, к которому приводит каждая совокупность дей­ствий. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулем, выигрыш – единицей, а ничью – 1/2. Количественная оценка результатов игры называется платежом .

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рас­сматривать только парные игры. В них участвуют два игрока А и В, интересы которых противоположны, а под игрой будем пони­мать ряд действий со стороны А и В.

Игра называется игрой с нулевой суммой, или антагонистиче­ ской , если выигрыш одного из игроков равен проигрышу другого, т.е. сумма выигрышей обеих сторон равна нулю. Для полного задания игры достаточно указать величину одно­го изних. Если обозначить а – выигрыш одного из игроков, b выигрыш другого, то для игры с нулевой суммой b = а , поэтому достаточно рассматривать, например а.

Выбор и осуществление одного из предусмотренных правила­ми действий называется ходом игрока. Ходы могут быть личными и случайными . Личный ход это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре). Набор возможных вариантов при каждом личном ходе регламентирован правилами игры и зависит от всей совокупности предшествующих ходов с обеих сторон.

Случайный ход это случайно выбранное действие (напри­мер, выбор карты из перетасованной колоды). Чтобы игра была математически определенной, правила игры должны для каждого случайного хода указывать рас­пределение вероятностей возможных исходов.

Некоторые игры могут состоять только из случайных ходов (так называемые чисто азартные игры) или только из личных ходов (шахматы, шашки). Большинство карточных игр принадлежит к играм смешанного типа, т. е. содержит как случайные, так и личные ходы. В дальнейшем мы будем рассматривать только личные ходы игроков.

Игры классифицируются не только по характеру ходов (личные, случайные), но и по характеру и по объему инфор­мации, доступной каждому игроку относительно действий другого. Особый класс игр составляют так называемые «игры с полной информацией». Игрой с полной информацией назы­вается игра, в которой каждый игрок при каждом личном ходе знает результаты всех предыдущих ходов,как личных, так и случайных. Примерами игр с полной информацией могут служить шахматы, шашки, а также известная игра «крестики и нолики». Большинство игр, имеющих практическое значение, не при­надлежит к классу игр с полной информацией, таккак неиз­вестность по поводу действий противника обычно является существенным элементом конфликтных ситуаций.

Одним из основных понятий теории игр является понятие стратегии .

Стратегией игрока называется совокупность правил, опреде­ляющих выбор его действия при каждом личном ходе в зависимо­сти от сложившейся ситуации. Обычно в процессе игры при каж­дом личном ходе игрок делает выбор в зависимости от конкрет­ной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуа­цию). Это означает, что игрок выбрал определенную стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Игра называется конечной , если у каждого игрока имеется конечное число страте­гий, и бесконечной .– в противном случае.

Для того чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовле­творяет условию оптимальности , т.е. один из игроков должен по­лучать максимальный выигрыш, когда второй придерживается своей стратегии, В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными . Оптимальные стратегии должны также удовлетворять условию устойчивости , т.е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.

Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной пар­тии, а средний выигрыш (проигрыш) во всех партиях.

Целью теории игр является определение оптимальной стратегии для каждого игрока.

6.2. Платежная матрица. Нижняя и верхняя цена игры

Конечная игра, в которой игрок А имеет т стратегий, а игрок В – п стратегий, называется игрой .

Рассмотрим игру
двух игроковА и В («мы» и «противник»).

Пусть игрок А располагает т личными стратегиями, которые обозначим
. Пусть у игрокаВ имеется n личных стратегий, обозначим их
.

Пусть каждая сторона выбрала определенную стратегию; для нас это будет , для противника. В результате выбора игроками любой пары стратегийи(
) однозначно определяется исход игры, т.е. выигрышигрокаА (положительный или отрицательный) и проигрыш
игрокаВ.

Предположим, что значения известны для любой пары страте­гий (,). Матрица
,
, элементами которой являются выигрыши, соответствующие страте­гиям и , называется платежной матрицей или матрицей игры. Строки этой матрицы соот­ветствуют стратегиям игрока А, а столбцы – стратегиям игрока B . Эти стратегии называются чистыми.

Матрица игры
имеет вид:

Рассмотрим игру
с матрицей

и определим наилучшую среди стратегий
. Выбирая стратегию , игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий , для которой выигрыш для иг­рока А минимален (игрок В стремится "навредить" игроку A ).

Обозначим через наименьший выигрыш игрокаА при вы­боре им стратегии для всех возможных стратегий игрокаВ (наименьшее число в i -й строке платежной матрицы), т.е.

(1)

Среди всех чисел (
) выберем наибольшее:
.

Назовем
нижней ценой нгры, или максимальным выигрышем (максмином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

. (2)

Стратегия, соответствующая максимину, называется максиминной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А, выбирая стратегию , он учитывает макси­мально возможный при этом выигрыш для А. Обозначим

. (3)

Среди всех чисел выберем наименьшее

и назо­вем верхней ценой игры илиминимаксным выигрышем (минимаксом). Эго гарантированный проигрыш игрока В . Следова­тельно,

. (4)

Стратегия, соответствующая минимаксу, называется минимаксной стратегией.

Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса . Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Теорема. Нижняя цена игры всегда не превосходит верхней цены игры
.

Если верхняя и нижняя цены игры совпадают, то общее значе­ние верхней и нижней цены игры
называется чистой ценой игры, или ценой игры. Минимакс­ные стратегии, соответствующие цене игры, являются оптимальными стратегиями , а их совокупность – оптимальным решением или решением игры. В этом случае игрок А получает максимальный га­рантированный (не зависящий от поведения игрока В) выигрыш v , а игрок В добивается минимального гарантированного (вне зависи­мости от поведения игрока А) проигрыша v . Говорят, что решение игры обладает устойчивостью , т.е. если один из игроков придержи­вается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Если один из игроков (например А) придерживается своей оптимальной стратегии, а другой игрок (В) будет любым способом отклоняться от своей оптимальной стра­тегии, то для игрока, допустившего отклонение, это никогда не может оказаться выгодным; такое отклонение игрока В может в лучшем случае оставить выигрыш неизменным. а в худшем случае – увеличить его.

Наоборот, если В придерживается своей оптимальной стратегии, а А отклоняется от своей, то это ни в коем случае не может быть выгодным для А.

Пара чистых стратегий и дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент явля­ется одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой. В геометрии точку на поверхности, обладающую свойством: одновременный минимум по одной координате и максимум по другой, называют седловой точкой, по аналогии этот термин применяют в теории игр.

Игра, для которой
,
называется игрой с седловой точкой. Элемент , обладающий этим свойством, седловой точкой матрицы.

Итак, для каждой игры с седловой точкой существует решение, определяющее пару оптимальных стратегий обеих сторон, отличающуюся следующими свойствами.

1) Если обе стороны придерживаются своих оптимальных стратегий, то средний выигрыш равен чистой цене игры v , одновременно являющейся ее нижней и верхней ценой.

2) Если одна из сторон придерживается своей оптимальной стратегии, а другая отклоняется от своей, то от этого отклоняющаяся сторона может только потерять и ни в коем случае не может увеличить свой выигрыш.

Класс игр, имеющих седловую точку, представляет боль­шой интерес как с теоретической, так и с практической точки зрения.

В теории игр доказывается, что, в частности, каждая игра с полной информацией имеет седловую точку, и, сле­довательно, каждая такая игра имеет решение, т. е. суще­ствует пара оптимальных стратегий той и другой стороны, дающая средний выигрыш, равный цене игры. Если игра с полной информацией состоит только из личных ходов, то при применении каждой стороной своей оптимальной стратегии она должна всегда кончаться вполне определенным исходом, а именно, выигрышем, в точности равным цене игры.

Игра называется игрой с нулевой суммой , или антагонистической , если выигрыш одного из игроков равен проигрышу другого, т.е. для полного задания игры достаточно указать величину одного из них. Если обозначить a - выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = - a , поэтому достаточно рассматривать, например, a .

Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход - это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре).

Случайный ход - это случайно выбранное действие (например, выбор карты из перетасованной колоды). В своей работе я буду рассматривать только личные ходы игроков.

Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе, возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определенную стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Игра называется конечной , если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае.

Для того, чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности , т.е. один из игроков должен получать максимальный выигрыш , когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такиестратегии называются оптимальными . Оптимальные стратегии должны так же удовлетворять условию устойчивости , т.е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.

Цель теории игр : определение оптимальной стратегии для каждого игрока. При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.

Антагонистические игры, в которых каждый игрок имеет конечное множество стратегий, называются матричными играми . Это название объясняется следующей возможностью описания игр такого рода. Составляем прямоугольную таблицу, в которой строки соответствуют стратегиям первого игрока, столбцы – стратегиям второго, а клетки таблицы, стоящие на пересечении строк и столбцов, соответствуют ситуациям игры. Если поставить в каждую клетку выигрыш первого игрока в соответствующей ситуации, то получим описание игры в виде некоторой матрицы. Эта матрица называется матрицей игры или матрицей выигрышей .

Одна и та же конечная антагонистическая игра может быть описана различными матрицами, отличающимися друг от друга лишь порядком строк и столбцов.

Рассмотрим игру m x n с матрицей Р = (a ij), i = 1,2, ... , m;j = 1,2, ... , n и определим наилучшую среди стратегий A 1 , А 2 , …, А m . Выбирая стратегию А i игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий B j , для которой выигрыш для игрока А минимален (игрок В стремится "навредить" игроку А ). Обозначим через a i , наименьший выигрыш игрока А при выборе им стратегии А i для всех возможных стратегий игрока В (наименьшее число в i-й строке платежной матрицы), т.е.

a i = a ij , j = 1,..., n .

Среди всех чисел a i (i = 1,2, ... , m ) выберем наибольшее. Назовем a нижней ценой игры или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В . Следовательно, , i = 1,... , m ; j = 1,..., n

Стратегия, соответствующая максимину, называется максимальной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрокаА ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для А .

Обозначим: β i = a ij , i = 1,... , m

Среди всех чисел B j выберем наименьшее и назовем β верхней ценой игры или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В .

Следовательно, i = 1,... , m ; j = 1,..., n.

Стратегия, соответствующая минимаксу, называется минимаксной стратегией .

Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.