Что такое андроидный коллайдер. Большой адронный коллайдер

Сроки повторного запуска БАКа из‑за выявления на нем новых неполадок уже несколько раз переносились . В частности, в середине июля 2009 года на коллайдере были обнаружены нарушения герметичности и утечки в системе охлаждения в секторах 8‑1 и 2‑3, из‑за чего запуск коллайдера был вновь отложен.

Как объявил ЦЕРН, пучки протонов вновь начнут циркулировать по 27‑километровому кольцу в середине ноября, а столкновения частиц начнутся несколько недель спустя.

Специалисты ЦЕРНа намерены сперва провести столкновения на энергии предыдущей ступени ускорителя ‑ 450 гигаэлектронвольт на пучок, и только затем доведут энергию до половины проектной ‑ до 3,5 тераэлектронвольт на пучок.

Однако физики отмечают, что и на этой энергии цель создания коллайдера ‑ обнаружение бозона Хиггса , частицы, отвечающей за массу всех других элементарных частиц, ‑ может быть достигнута.

БАК будет работать в этом режиме до конца 2010 года, после чего он будет остановлен для подготовки к переходу к энергии в 7 тераэлектронвольт на пучок.

В мае 2009 года в мировой прокат вышел приключенческий фильм "Ангелы и демоны" по мотивам одноименной книги Дэна Брауна.

ЦЕРН играет ключевую роль в сюжете этого произведения, и несколько эпизодов фильма были отсняты на территории ЦЕРНа. Поскольку в фильме присутствуют элементы вымысла, в том числе и при описании того, что и как изучается в ЦЕРНе, руководство ЦЕРНа сочло полезным предупредить те вопросы, которые неизбежно возникнут у многих зрителей фильма. С этой целью был запущен специальный вебсайт Angels and Demons ‑ the science behind the story. На нём в доступной форме рассказывается о тех физических явлениях, которые вплетены в сюжет фильма (прежде всего ‑ это получение, хранение и свойства антиматерии).

Развитие сюжета начинается с двух, казалось бы, не связанных между собой, но, тем не менее, ключевых для фильма событий: смерть действующего Папы Римского, и завершение экспериментов с Большим адронным коллайдером. В результате испытаний ученые получают антивещество, которое по силе действия может сравниться с самым мощным оружием. Тайное общество Иллюминатов решает воспользоваться этим изобретением в собственных целях - уничтожить Ватикан, центр мирового католицизма, который сейчас как раз остался без главы.

Материал подготовлен на основе информации РИА Новости и открытых источников

Специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком.

Большой адронный коллайдер (Large Hadron Collider, LHC) — ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов).

На Большом адронном коллайдере открыта новая частица, заявили физики Специалисты Европейского центра ядерных исследований, работающие на Большом адронном коллайдере, объявили об открытии пентакварка - частицы, предсказанной российскими учеными.

Находится на территории Франции и Швейцарии и принадлежит Европейскому совету по ядерным исследованиям (Conseil Europeen pour la Recherche Nucleaire, CERN, ЦЕРН).

На тот момент ученым не было в точности ясно, насколько открытая ими частица соответствует предсказаниям Стандартной модели. К марту 2013 года физики получили достаточно данных о частице, чтобы официально объявить, что это бозон Хиггса.

8 октября 2013 года британскому физику Питеру Хиггсу и бельгийцу Франсуа Энглеру, открывшему механизм нарушения электрослабой симметрии (благодаря этому нарушению элементарные частицы могут иметь массу), была присуждена Нобелевская премия по физике за "теоретическое открытие механизма, который обеспечил понимание происхождения масс элементарных частиц".

В декабре 2013 года, благодаря анализу данных с помощью нейронных сетей, физики ЦЕРНа впервые следы распада бозона Хиггса на фермионы — тау-лептоны и пары b-кварк и b-антикварк.

В июне 2014 года ученые, работающие на детекторе ATLAS, после обработки всей накопленной статистики, уточнили результаты измерения массы хиггсовского бозона. По их данным масса бозона Хиггса равна 125,36 ± 0,41 гигаэлектронвольт. Это практически совпадает — как по значению, так и по точности — с результатом ученых, работающих на детекторе CMS.

В февральской 2015 года публикации в журнале Physical Review Letters физики заявили, что возможной причиной практически полного отсутствия антиматерии во Вселенной и преобладания обычной видимой материи могли послужить движения поля Хиггса - особой структуры, где "живут" бозоны Хиггса. Российско-американский физик Александр Кусенко из университета Калифорнии в Лос-Анджелесе (США) и его коллеги полагают, что им удалось найти ответ на эту вселенскую загадку в тех данных, которые были Большим адронным коллайдером во время первого этапа его работы, когда был обнаружен бозон Хиггса, знаменитая "частица бога".

14 июля 2015 года стало известно, что специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком. Изучение свойств пентакварков позволит лучше понять, как устроена обычная материя. Возможность существования пентакварков сотрудники Петербургского института ядерной физики имени Константинова Дмитрий Дьяконов, Максим Поляков и Виктор Петров.

Данные, собранные БАК на первом этапе работы, позволили физикам из коллаборации LHCb, занимающейся поиском экзотических частиц на одноименном детекторе, "поймать" сразу несколько частиц из пяти кварков, получивших временные имена Pc(4450)+ и Pc(4380)+. Они обладают очень большой массой - около 4,4-4,5 тысячи мегаэлектронвольт, что примерно в четыре-пять раз больше, чем аналогичный показатель для протонов и нейтронов, а также достаточно необычным спином. По своей природе они представляют собой четыре "нормальных" кварка, склеенных с одним антикварком.

Статистическая достоверность открытия девять сигма, что эквивалентно одной случайной ошибке или сбою в работе детектора в одном случае на четыре миллиона миллиардов (10 в 18 степени) попыток.

Одной из целей второго запуска БАК станет поиск темной материи. Предполагается, что обнаружение такой материи поможет решить проблемы скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Материал подготовлен на основе информации РИА Новости и открытых источников

БАК – это, прежде всего, большая страшилка. Но так ли опасна она и следует ли её бояться? И да, и нет! Во-первых, всё и даже больше, о чём собираются узнать физики и астрофизики уже заранее известно (см. ниже). А то, что представляет собой настоящую угрозу, из области их предположений, оказывается совсем иной угрозой. Я, почему так уверено говорю об этом, да только потому, что мной сделано 60 научных открытий свойств эфира Вселенной и поэтому об эфире известно всё, но пока мне одному. Во-первых, наука в корне ошибается в отношении «чёрных дыр». «Чёрные дыры» – это ядра всех галактик. Они огромные и их нельзя создать в миниатюре искусственно никоим образом. И вот почему? Любая галактика представляет собой гигантский естественный осциллятор, который циклически расширяется и сокращается с периодом в десятки миллиардов лет. В конце сокращения большинство галактик приобретают форму шара (ядро). Вся Вселенная, в том числе и все галактики, состоят главным образом из эфира. Эфир представляет собой идеальную неразрывную сжимаемую жидкость, сжатую до колоссального давления, имеет огромную плотность и, самое важное, его вязкость оказывается равной нулю. Ядро и есть «чёрная дыра», но в отличие от общепринятого представления о нём в нём нет, и не может быть, никакой материи в любом её виде – один лишь эфир. За сокращением галактики сразу же следует её расширение. В частности, из шарообразной формы дополнительно начинается образовываться дискообразная форма. В результате расширения в ней эфира его статическое давление внутри уменьшается. Через миллионы лет наступает первое критическое давление, при котором из эфира подобно капелькам росы появляются самые различные субэлементарные частицы, в том числе фотоны, жёсткое излучение – рентгеновские лучи, «частицы Бога» и прочие. Галактика становится видимой, светящейся. Если она обращена к нам боком, то в центре вокруг оси наблюдается чёрная точка или чёрное пятно – эфир в котором материя не образуется. Она образуется на больших диаметрах. Существует зона или видимый пояс, в котором образуется материя. Далее по мере расширения дискообразной части происходит усложнение материи. Субэлементарные частицы оказываются сдавленными со всех сторон эфиром. Сам эфир между частицами образует параболоиды вращения со статическим давлением меньшим, чем в окружающем их эфире. Наименьшие поперечные сечение параболоидов на средине расстояния между центрами масс этих частиц и определяют силы сдавливания частиц от не скомпенсированного давления на них с противоположных сторон. Под действием сил сдавливания частицы приходят в движение. Частиц великое множество, поэтому результирующие силы от сдавливающих сил оказываются долгое время равными нулю. За сотни миллионов лет это равновесие постепенно нарушается. Некоторые из них слипаются, затормаживая своё движение, другие не успевают пройти мимо и под действием сил сдавливания начинают вращаться вокруг слипшихся более массивных частиц, образую атомы. Затем через миллиарды лет таким же образом образуются молекулы. Материя постепенно усложняется: образуются газовые звёзды, затем звёзды с планетами. На планетах под действием всё тех же сил сдавливания материя становиться более сложной. Образуются: газообразные, жидкие и твёрдые вещества. Затем на отдельных из них появляется растительный и животный мир и, наконец, живые существа наделённые разумом – люди и инопланетяне. Таким образом, в удалённых зонах галактики по мере расширения дискообразной части, материя становится тем сложнее, чем дальше она находится от центра ядра. В самом же ядре статическое давление, по-видимому, всегда оказывается выше критического, поэтому в нём образование материи оказывается невозможным. Гравитация как таковая не существует вовсе. Во Вселенной и, в частности, в галактиках действует закон всемирного сдавливания (выдавливания). Ядро галактики является «чёрной дырой», но она не обладают силами затягивающими материю. Свет, попавший в такую дыру, свободно проникает сквозь неё вопреки заявлениям о том, что это якобы невозможно. Поскольку эфир Вселенной представляет собой неделимую сжимаемую жидкость, то он не обладает температурой. Температуру имеет лишь материя, поскольку она дискретна (состоит из частиц). Поэтому нашумевший Большой взрыв и Теория тепловой вселенной оказываются ошибочными. Поскольку во Вселенной действует Закон всемирного сдавливания (выдавливания), то отсутствует ни чем не объяснимая гравитация как таковая, принимаемая учёными просто – на веру. Поэтому не состоятельной оказывается ОТО – общая теория относительности А. Эйнштейна и все теории основанные на различного рода полей и зарядов. Никаких полей и зарядов попросту нет. Находит простое и понятное объяснение четыре великих взаимодействия. Кроме того притяжение объясняется сдавливанием, а отталкивание – выдавливанием. Относительно зарядов: разноимённые заряды притягиваются (явление – сдавливание), а одноименные отталкиваются (явление – выталкивание). Поэтому ещё целый ряд теорий также становятся не состоятельными. Однако падать в обморок от страха из-за образования «чёрных дыр» в БАК – Большом андронном коллайдере не следует. Ему её никогда не создать, как бы не пыжился его персонал, и какие бы клятвенные заверения не давал. Создавать «частицы Бога» (бозон Гиггса), по-видимому,_ невозможно и не целесообразно. Эти частицы сами в готовом виде прилетают к нам из первой зоны нашей галактики «Млечный путь», а бояться их – тем паче не следует. Бозон атакует Землю уже миллиарды лет и за это время ничего опасного не случилось. Однако чего следует бояться? Опасность есть и очень большая, о которой даже не догадываются те, которые экспериментируют на БАК! В БАК разгоняют до ранее не достижимых около световых скоростей сравнительно тяжёлые частицы. И, если только они по какой-то причине отклонятся от заданной траектории движения и поэтому попадут в детектор или ещё куда-нибудь, то они, обладая большой скоростью и удельной энергией, а её пытаются увеличивать, начнут вышибать электроны из атомов не радиоактивных веществ, провоцирую тем самым ранее неизвестную ядерную реакцию. После чего начнётся самопроизвольное деление ядер практически всех веществ. Причём это будет атомный взрыв не виданной ранее силы. Вот из-за этого и исчезнет: сначала БАК со Швейцарией, затем Европа и весь земной шар. Хотя на этом быть может всё и остановится, но всех нас уже не будет. Это и будет катастрофа космического масштаба. Поэтому пока не поздно надо персоналу БАК проявить смелость и немедленно приостановить эксперименты на БАК до выяснения истинной причины: так это будет или не так? Быть может я, к счастью, ошибаюсь. Хорошо, если бы это было так. Только коллектив учёных может дать правильный ответ на этот вопрос. Колпаков Анатолий Петрович, инженер-механик

В 100 метрах под землей, на границе Франции и Швейцарии, расположено устройство, которое способно приоткрыть тайны мироздания. Или, по мнению некоторых, уничтожить всю жизнь на Земле.

Так или иначе, это самая большая машина в мире, и она используется для исследования мельчайших частиц во Вселенной. Это Большой адронный (не андроидный) коллайдер (LHC).

Краткое описание

LHC является частью проекта, который возглавляет Европейская организация ядерных исследований (ЦЕРН). Коллайдер включен в комплекс ускорителей ЦЕРН за пределами Женевы в Швейцарии и используется для разгона пучков протонов и ионов до скорости, приближающейся к скорости света, столкновения частиц друг с другом и записи результирующих событий. Ученые надеются, что это поможет больше узнать о возникновении Вселенной и о ее составе.

Что такое коллайдер (LHC)? Это самый амбициозный и мощный ускоритель частиц, построенный на сегодняшний день. Тысячи ученых из сотен стран сотрудничают и конкурируют друг с другом в поиске новых открытий. Для сбора данных экспериментов предусмотрены 6 участков, расположенные вдоль окружности коллайдера.

Сделанные с его помощью открытия могут стать полезными в будущем, но это не причина его постройки. Цель Большого адронного коллайдера - расширить наши знания о Вселенной. Учитывая, что LHC стоит миллиарды долларов и требует сотрудничества многих стран, отсутствие практического применения может быть неожиданным.

Для чего нужен Адронный коллайдер?

В попытке понять нашу Вселенную, ее функционирование и фактическую структуру, ученые предложили теорию, называемую стандартной моделью. В ней предпринята попытка определить и объяснить фундаментальные частицы, которые делают мир таким, каким он есть. Модель объединяет элементы теории относительности Эйнштейна с квантовой теорией. В ней также учтены 3 из 4 основных сил Вселенной: сильные и слабые ядерные взаимодействия и электромагнетизм. Теория не касается 4-й фундаментальной силы - силы тяжести.

Стандартная модель дала несколько предсказаний о Вселенной, которые согласуются с различными экспериментами. Но есть и другие ее аспекты, которые требовали подтверждения. Один из них - теоретическая частица, называемая бозоном Хиггса.

Его открытие дает ответ на вопросы о массе. Почему материя ею обладает? Ученые идентифицировали частицы, у которых нет массы, например, нейтрино. Почему у одних она есть, а у других - нет? Физики предложили много объяснений.

Самое простое из них - механизм Хиггса. Эта теория гласит, что существует частица и соответствующая ей сила, которая объясняет наличие массы. Ранее она никогда не наблюдалась, поэтому события, создаваемые LHC, должны были либо доказать существование бозона Хиггса, либо дать новую информацию.

Еще один вопрос, которым задаются ученые, связан с зарождением Вселенной. Тогда материя и энергия были одним целым. После их разделения частицы вещества и антиматерии уничтожили друг друга. Если бы количество их было равным, то ничего бы не осталось.

Но, к счастью для нас, во Вселенной материи было больше. Ученые надеются наблюдать антивещество во время работы LHC. Это могло бы помочь понять причину разницы в количестве материи и антиматерии, когда началась Вселенная.

Темная материя

Современное понимание Вселенной предполагает, что пока можно наблюдать лишь около 4% материи, которая должна существовать. Движение галактик и других небесных тел говорит о том, что существует гораздо больше видимого вещества.

Ученые назвали эту неопределенную материю темной. Наблюдаемая и темная материя составляют около 25%. Другие 3/4 исходят от гипотетической темной энергии, которая способствует расширению Вселенной.

Ученые надеются, что их эксперименты либо предоставят дополнительные доказательства существования темной материи и темной энергии, либо подтвердят альтернативную теорию.

Но это лишь верхушка айсберга физики элементарных частиц. Есть еще более экзотические и противоречивые вещи, которые необходимо выявить, для чего и нужен коллайдер.

Большой взрыв в микромасштабах

Сталкивая протоны с достаточно большой скоростью, LHC разбивает их на более мелкие атомные субчастицы. Они очень нестабильны, и до распада или рекомбинации существуют только долю секунды.

Согласно теории Большого взрыва, первоначально из них состояла все материя. По мере расширения и охлаждения Вселенной они объединились в более крупные частицы, такие как протоны и нейтроны.

Необычные теории

Если теоретические частицы, антиматерия и темная энергия, не являются достаточно экзотичными, некоторые ученые считают, что LHC может предоставить доказательства существования других измерений. Принято считать, что мир является четырехмерным (трехмерное пространство и время). Но физики предполагают, что могут существовать и другие измерения, которые люди не могут воспринимать. Например, одна версия теории струн требует наличия не менее 11 измерений.

Адепты этой теории надеются, что LHC предоставит доказательства предлагаемой ими модели Вселенной. По их мнению, фундаментальными строительными кирпичиками являются не частицы, а струны. Они могут быть открытыми или закрытыми, и вибрировать подобно гитарным. Различие в колебаниях делает струны разными. Одни проявляют себя в виде электронов, а другие реализуются как нейтрино.

Что такое коллайдер в цифрах?

LHC представляет собой массивную и мощную конструкцию. Он состоит из 8 секторов, каждый из которых является дугой, ограниченной на каждом конце секцией, называемой «вставкой». Длина окружности коллайдера равна 27 км.

Трубки ускорителя и камеры столкновений находятся на глубине 100 метров под землей. Доступ к ним обеспечивает сервисный туннель с лифтами и лестницами, расположенными в нескольких точках вдоль окружности LHC. ЦЕРН также построил наземные здания, в которых исследователи могут собирать и анализировать данные, генерируемые детекторами коллайдера.

Для управления пучками протонов, движущихся со скоростью равной 99,99% скорости света, используются магниты. Они огромны, весят несколько тонн. В LHC имеется около 9 600 магнитов. Они охлаждаются до 1,9К (-271,25 °C). Это ниже температуры космического пространства.

Протоны внутри коллайдера проходят по трубам со сверхвысоким вакуумом. Это необходимо, чтобы не было частиц, с которыми они могли бы столкнуться до достижения цели. Единственная молекула газа может привести к неудаче эксперимента.

На окружности большого коллайдера есть 6 участков, где инженеры смогут проводить свои эксперименты. Их можно сравнить с микроскопами с цифровой камерой. Некоторые из этих детекторов огромны - ATLAS представляет собой устройство длиной 45 м, высотой 25 м и весом 7 т.

В LHC задействовано около 150 млн датчиков, которые собирают данные и отправляют их в вычислительную сеть. Согласно ЦЕРН объем информации, получаемой во время экспериментов, составляет около 700 МБ/с.

Очевидно, что такому коллайдеру требуется много энергии. Его годовая потребляемая мощность составляет около 800 ГВт∙ч. Она могла быть намного больше, но объект не работает в зимние месяцы. По данным ЦЕРН стоимость энергии составляет порядка 19 млн евро.

Столкновение протонов

Принцип, лежащий в основе физики коллайдера, довольно прост. Сперва производится запуск двух пучков: одного - по часовой стрелке, а второго - против. Оба потока ускоряются до скорости света. Затем их направляют навстречу друг к другу и наблюдают результат.

Оборудование, необходимое для достижения этой цели, намного сложнее. LHC является частью комплекса ЦЕРН. Прежде, чем какие-либо частицы войдут в LHC, они уже проходят ряд шагов.

Во-первых, для получения протонов ученые должны лишить атомы водорода электронов. Затем частицы направляются в установку LINAC 2, которая запускает их в ускоритель PS Booster. Эти машины для ускорения частиц используют переменное электрическое поле. Удерживать пучки помогают поля, создаваемые гигантскими магнитами.

Когда луч достигает нужного энергетического уровня, PS Booster направляет его в суперсинхротрон SPS. Поток ускоряется еще больше и делится на 2808 пучков по 1,1 x 1011 протонов. SPS вводит лучи в LHC по часовой и против часовой стрелки.

Внутри Большого адронного коллайдера протоны продолжают ускоряться в течение 20 минут. На максимальной скорости они совершают 11245 оборотов вокруг LHC каждую секунду. Лучи сходятся на одном из 6 детекторов. При этом происходит 600 млн столкновений в секунду.

Когда сталкиваются 2 протона, они расщепляются на более мелкие частицы, в том числе кварки и глюоны. Кварки очень неустойчивы и распадаются за долю секунды. Детекторы собирают информацию, отслеживая путь субатомных частиц, и направляют ее в вычислительную сеть.

Не все протоны сталкиваются. Остальные продолжают движение до секции сброса луча, где поглощаются графитом.

Детекторы

Вдоль окружности коллайдера расположены 6 секций, в которых производится сбор данных и проводятся эксперименты. Из них 4 детектора основные и 2 меньшего размера.

Самым крупным является ATLAS. Его размеры - 46 х 25 х 25 м. Трекер обнаруживает и анализирует импульс частиц, проходящих через ATLAS. Его окружает калориметр, измеряющий энергию частиц, поглощая их. Ученые могут наблюдать траекторию их движения и экстраполировать информацию о них.

Детектор ATLAS также имеет мюонный спектрометр. Мюоны - это отрицательно заряженные частицы в 200 раз тяжелее электронов. Они единственные способны проходить через калориметр без остановки. Спектрометр измеряет импульс каждого мюона датчиками заряженных частиц. Эти сенсоры могут обнаруживать флуктуации в магнитном поле ATLAS.

Компактный мюонный соленоид (CMS) является детектором общего назначения, который обнаруживает и измеряет субчастицы, высвобождаемые во время столкновений. Прибор находится внутри гигантского соленоидного магнита, который может создать магнитное поле, почти в 100 тысяч раз превышающее магнитное поле Земли.

Детектор ALICE разработан для изучения столкновений ионов железа. Таким образом исследователи надеются воссоздать условия, подобные тем, которые произошли сразу после Большого взрыва. Они ожидают увидеть, как ионы превращаются в смесь кварков и глюонов. Основным компонентом ALICE является камера TPC, служащая для изучения и воссоздания траектории частиц.

LHC служит для поиска доказательств существования антивещества. Он делает это путем поиска частицы, называемой прелестным кварком. Ряд субдетекторов, окружающих точку столкновения, имеет 20 метров в длину. Они могут улавливать очень неустойчивые и быстро распадающиеся частицы прелестных кварков.

Эксперимент ТОТЕМ проводится на участке с одним из малых детекторов. Он измеряет размер протонов и яркость LHC, указывающей на точность создания столкновений.

Эксперимент LHC имитирует космические лучи в контролируемой среде. Его целью является помощь в разработке широкомасштабных исследований реальных космических лучей.

На каждом участке детектирования работает команда исследователей, насчитывающая от нескольких десятков до более тысячи ученых.

Обработка данных

Неудивительно, что такой коллайдер генерирует огромный поток данных. 15 000 000 ГБ, ежегодно получаемых детекторами LHC, ставят перед исследователями огромную задачу. Ее решением является вычислительная сеть, состоящая из компьютеров, каждый из которых способен самостоятельно анализировать фрагмент данных. Как только компьютер завершит анализ, он отправляет результаты на центральный компьютер и получает новую порцию.

Ученые из ЦЕРН решили сосредоточиться на использовании относительно недорогого оборудования для выполнения своих расчетов. Вместо приобретения передовых серверов и процессоров используется имеющееся оборудование, которое может хорошо работать в сети. При помощи специального ПО сеть компьютеров сможет хранить и анализировать данные каждого эксперимента.

Опасность для планеты?

Некоторые опасаются, что такой мощный коллайдер может представлять угрозу для жизни на Земле, в том числе участвовать в формировании черных дыр, «странной материи», магнитных монополий, радиации и т.д.

Ученые последовательно опровергают такие утверждения. Образование черной дыры невозможно, поскольку между протонами и звездами есть большая разница. «Странная материя» уже давно бы могла образоваться под действием космических лучей, и опасность этих гипотетических образований сильно преувеличена.

Коллайдер чрезвычайно безопасен: он отделен от поверхности 100-метровым слоем грунта, а персоналу запрещено находиться под землей во время проведения экспериментов.

(или БАК) - на данный момент самый большой и мощный ускоритель частиц в мире. Эта махина была запущена в 2008 году, но долго работала на пониженных мощностях. Разберемся, что это такое и зачем нужен большой адронный коллайдер.

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

Адроны делятся на барионы и мезоны. Чтобы было проще, скажем, что из барионов состоит почти все известное нам вещество. Упростим еще больше и скажем, что барионы - это нуклоны (протоны и нейтроны, составляющие атомное ядро).

Как работает большой адронный коллайдер

Масштаб очень впечатляет. Коллайдер представляет собой кольцевой туннель, залегающий под землей на глубине ста метров. Длина большого адронного коллайдера составялет 26 659 метров. Протоны, разогнанные до скоростей близких к скорости света, пролетают в подземном круге по территории Франции и Швейцарии. Если говорить точно, то глубина залегания туннеля лежит в пределах от 50 до 175 метров. Для фокусировки и удержания пучков летящих протонов используются сверхпроводящие магниты, их общая длина составляет около 22 километров, а работают они при температуре -271 градусов по Цельсию.

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц , получены первые данные столкновений на рекордных энергиях , показано отсутствие асимметрии протонов и антипротонов , обнаружены необычные корреляции протонов . Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

И это при том, что коллайдер еще не разогнали до его максимальной мощности. Сейчас максимальная энергия большого адронного коллайдера – 13 ТэВ (тера электрон-Вольт). Однако, после соответствующей подготовки протоны планируют разогнать до 14 ТэВ . Для сравнения, в ускорителях- предшественниках БАК максимально полученные энергии не превышали 1 ТэВ . Так разгонять частицы мог американский ускоритель Тэватрон из штата Иллинойс. Энергия, достигнутая в коллайдере - далеко не самая Большая в мире. Так, энергия космических лучей, зафиксированных на Земле, превышает энергию частицы, разогнанной в коллайдере в миллиард раз! Так что, опасность большого адронного коллайдера минимальна. Вполне вероятно, что после того, как все ответы будут получены с помощью БАК, человечеству придется строить еще один коллайдер по-мощнее.

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут . Обращайтесь за помощью, и пусть учеба приносит радость!