Площадь многоугольника формула с разными сторонами. Площадь многоугольника

\[{\Large{\text{Основные факты о площади}}}\]

Можно сказать, что площадь многоугольника - это величина, обозначающая часть плоскости, которую занимает данный многоугольник. За единицу измерения площади принимают площадь квадрата со стороной \(1\) см, \(1\) мм и т.д. (единичный квадрат). Тогда площадь будет измеряться в см\(^2\) , мм\(^2\) соответственно.

Иными словами, можно сказать, что площадь фигуры - это величина, численное значение которой показывает, сколько раз единичный квадрат умещается в данной фигуре.

Свойства площади

1. Площадь любого многоугольника - величина положительная.

2. Равные многоугольники имеют равные площади.

3. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

4. Площадь квадрата со стороной \(a\) равна \(a^2\) .

\[{\Large{\text{Площадь прямоугольника и параллелограмма}}}\]

Теорема: площадь прямоугольника

Площадь прямоугольника со сторонами \(a\) и \(b\) равна \(S=ab\) .

Доказательство

Достроим прямоугольник \(ABCD\) до квадрата со стороной \(a+b\) , как показано на рисунке:

Данный квадрат состоит из прямоугольника \(ABCD\) , еще одного равного ему прямоугольника и двух квадратов со сторонами \(a\) и \(b\) . Таким образом,

\(\begin{multline*} S_{a+b}=2S_{\text{пр-к}}+S_a+S_b \Leftrightarrow (a+b)^2=2S_{\text{пр-к}}+a^2+b^2 \Leftrightarrow\\ a^2+2ab+b^2=2S_{\text{пр-к}}+a^2+b^2 \Rightarrow S_{\text{пр-к}}=ab \end{multline*}\)

Определение

Высота параллелограмма - это перпендикуляр, проведенный из вершины параллелограмма к стороне (или к продолжению стороны), не содержащей эту вершину.
Например, высота \(BK\) падает на сторону \(AD\) , а высота \(BH\) - на продолжение стороны \(CD\) :


Теорема: площадь параллелограмма

Площадь параллелограмма равна произведению высоты и стороны, к которой проведена эта высота.

Доказательство

Проведем перпендикуляры \(AB"\) и \(DC"\) , как показано на рисунке. Заметим,что эти перпендикуляры равны высоте параллелограмма \(ABCD\) .


Тогда \(AB"C"D\) – прямоугольник, следовательно, \(S_{AB"C"D}=AB"\cdot AD\) .

Заметим, что прямоугольные треугольники \(ABB"\) и \(DCC"\) равны. Таким образом,

\(S_{ABCD}=S_{ABC"D}+S_{DCC"}=S_{ABC"D}+S_{ABB"}=S_{AB"C"D}=AB"\cdot AD.\)

\[{\Large{\text{Площадь треугольника}}}\]

Определение

Будем называть сторону, к которой в треугольнике проведена высота, основанием треугольника.

Теорема

Площадь треугольника равна половине произведения его основания на высоту, проведенную к этому основанию.

Доказательство

Пусть \(S\) – площадь треугольника \(ABC\) . Примем сторону \(AB\) за основание треугольника и проведём высоту \(CH\) . Докажем, что \ Достроим треугольник \(ABC\) до параллелограмма \(ABDC\) так, как показано на рисунке:

Треугольники \(ABC\) и \(DCB\) равны по трем сторонам (\(BC\) – их общая сторона, \(AB = CD\) и \(AC = BD\) как противоположные стороны параллелограмма \(ABDC\) ), поэтому их площади равны. Следовательно, площадь \(S\) треугольника \(ABC\) равна половине площади параллелограмма \(ABDC\) , то есть \(S = \dfrac{1}{2}AB\cdot CH\) .

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_1B_1C_1\) имеют равные высоты, то их площади относятся как основания, к которым эти высоты проведены.


Следствие

Медиана треугольника делит его на два треугольника, равных по площади.

Теорема

Если два треугольника \(\triangle ABC\) и \(\triangle A_2B_2C_2\) имеют по равному углу, то их площади относятся как произведения сторон, образующих этот угол.

Доказательство

Пусть \(\angle A=\angle A_2\) . Совместим эти углы так, как показано на рисунке (точка \(A\) совместилась с точкой \(A_2\) ):


Проведем высоты \(BH\) и \(C_2K\) .

Треугольники \(AB_2C_2\) и \(ABC_2\) имеют одинаковую высоту \(C_2K\) , следовательно: \[\dfrac{S_{AB_2C_2}}{S_{ABC_2}}=\dfrac{AB_2}{AB}\]

Треугольники \(ABC_2\) и \(ABC\) имеют одинаковую высоту \(BH\) , следовательно: \[\dfrac{S_{ABC_2}}{S_{ABC}}=\dfrac{AC_2}{AC}\]

Перемножая последние два равенства, получим: \[\dfrac{S_{AB_2C_2}}{S_{ABC}}=\dfrac{AB_2\cdot AC_2}{AB\cdot AC} \qquad \text{ или } \qquad \dfrac{S_{A_2B_2C_2}}{S_{ABC}}=\dfrac{A_2B_2\cdot A_2C_2}{AB\cdot AC}\]

Теорема Пифагора

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов:


Верно и обратное: если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других двух сторон, то такой треугольник прямоугольный.

Теорема

Площадь прямоугольного треугольника равна половине произведения катетов.

Теорема: формула Герона

Пусть \(p\) – полупериметр треугольника, \(a\) , \(b\) , \(c\) – длины его сторон, тогда его площадь равна \

\[{\Large{\text{Площадь ромба и трапеции}}}\]

Замечание

Т.к. ромб является параллелограммом, то для него верна та же формула, т.е. площадь ромба равна произведению высоты и стороны, к которой проведена эта высота.

Теорема

Площадь выпуклого четырехугольника, диагонали которого перпендикулярны, равна половине произведения диагоналей.

Доказательство

Рассмотрим четырехугольник \(ABCD\) . Обозначим \(AO=a, CO=b, BO=x, DO=y\) :


Заметим, что данный четырехугольник составлен из четырех прямоугольных треугольников, следовательно, его площадь равна сумме площадей этих треугольников:

\(\begin{multline*} S_{ABCD}=\frac12ax+\frac12xb+\frac12by+\frac12ay=\frac12(ax+xb+by+ay)=\\ \frac12((a+b)x+(a+b)y)=\frac12(a+b)(x+y)\end{multline*}\)

Следствие: площадь ромба

Площадь ромба равна половине произведения его диагоналей: \

Определение

Высота трапеции – это перпендикуляр, проведенный из вершины одного основания к другому основанию.

Теорема: площадь трапеции

Площадь трапеции равна произведению полусуммы оснований на высоту.

Доказательство

Рассмотрим трапецию \(ABCD\) с основаниями \(BC\) и \(AD\) . Проведем \(CD"\parallel AB\) , как показано на рисунке:


Тогда \(ABCD"\) – параллелограмм.

Проведем также \(BH"\perp AD, CH\perp AD\) (\(BH"=CH\) – высоты трапеции).

Тогда \(S_{ABCD"}=BH"\cdot AD"=BH"\cdot BC, \quad S_{CDD"}=\dfrac12CH\cdot D"D\)

Т.к. трапеция состоит из параллелограмма \(ABCD"\) и треугольника \(CDD"\) , то ее площадь равна сумме площадей параллелограмма и треугольника, то есть:

\ \[=\dfrac12 CH\left(BC+AD"+D"D\right)=\dfrac12 CH\left(BC+AD\right)\]

Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.

Как найти площадь многоугольника – треугольник

  • S = 1/2×h×b, где h – высота, а b – сторона.
  • S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
  • S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
  • S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
  • S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.

Прямоугольный треугольник

  • S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
  • S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
  • S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.


Равнобедренный треугольник

  • S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
  • S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.


Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.


Как найти площадь многоугольника – квадрат

  • S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
  • S = d²/2, где d – диагональ квадрата.


Как найти площадь многоугольника – прямоугольник

  • S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
  • S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5². x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²


Как найти площадь многоугольника – трапеция

  • S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
  • S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
  • S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
  • S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.


Равнобедренная трапеция

S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.


Площадь правильного многоугольника

  • S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
  • S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.
    Также вычислить площадь правильного многоугольника поможет данный онлайн сервис . Просто вставьте нужное значение и получите ответ.


Площадь неправильного многоугольника

Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:

  • Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
  • Умножаем значение x одной вершины на значение y второй и так далее.
  • Складываем все значение, получаем какое-то число.


  • Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.


  • От суммы значений первой таблицы отнимаем сумму значений второй таблицы.


  • Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.


Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин. Какие их виды существуют? Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника.

Площадь многоугольника

Расчет площади Многоугольника, используя радиус вписанного круга и длину стороны:[ (A×P)/2 ][ Apothem(A) = side/(2×Tan(π/N)) ] Введите длину = Введите кол-во сторон = Площадь Многоугольника = Расчет площади по длине стороны:Площадь Многоугольника = ((side)² * N) / (4Tan(π / N))Периметр Многоугольника = N * (side) Расчет площади по радиусу описанной окружности:Площадь Многоугольника = ½ * R² * Sin(2π / N) Расчет площади по радиусу вписанного круга:Площадь Многоугольника = A² * N * Tan(π / N)где, A = R * Cos(π / N) По радиусу вписанного круга и длине стороны:Площадь Многоугольника = (A * P) / 2где A = сторона / (2 * Tan(π / N))где,

  • N = Количество сторон,
  • A = Радиус вписанного круга,
  • R = Радиус описанной окрудности,
  • P = Периметр

Примеры: Задача 1: Найдите площадь и периметр многоугольника, если длина стороны = 2 и количество сторон = 4.

Площадь правильного многоугольника

Из нее легко получить такую, которая пригодится для частных случаев:

  1. треугольника: S = (3√3)/4 * R2;
  2. квадрата: S = 2 * R2;
  3. шестиугольника: S = (3√3)/2 * R2.

Ситуация с неправильной фигурой Выходом для того, как узнать площадь многоугольника, если он не является правильным и его нельзя отнести ни к одной из известных ранее фигур, является алгоритм:

  • разбить его на простые фигуры, например, треугольники, чтобы они не пересекались;
  • вычислить их площади по любой формуле;
  • сложить все результаты.

Что делать, если в задаче даны координаты вершин многоугольника? То есть известен набор пар чисел для каждой точки, которые ограничивают стороны фигуры.


Обычно они записываются как (x1; y1) для первой, (x2; y2) - для второй, а n-ая вершина имеет такие значения (xn; yn).

Площадь и периметр многоугольника

Тогда площадь многоугольника определяется, как сумма n слагаемых.

Внимание

Каждое из них выглядит так: ((yi+1 +yi)/2) * (xi+1 — xi).


В этом выражении i изменяется от единицы до n. Стоит отметить, что знак результата будет зависеть от обхода фигуры.
При использовании указанной формулы и движении по часовой стрелке ответ будет получаться отрицательным.


Пример задачи Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5).

Инфо

Требуется вычислить площадь многоугольника. Решение.


По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 — 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8. Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 — 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин.
Все идет так, как нужно.
Шаг 1: Найдем радиус вписанного круга.А = R * Cos(π / N)= 2 * Cos(3.14 / 5)= 2 * Cos(0.63)= 2 * 0.81Апофема (радиус вписанного круга) = 1.62.Шаг 2: Найдем площадь.Площадь = A² * N * Tan(π / N)= 1.62² * 5 * Tan(3.14 / 5)= 2.62 * 5 * Tan(0.63)= 13.1 * 0.73Площадь = 9.5. Задача 4: Найти площадь многоугольника используя Апофему (радиус вписанного круга), если длина стороны равна 2, а количество сторон 5.Step 1: Найдем Апофему.Апофема = длина стороны / (2 * Tan(π / N))= 2 / (2 * Tan(π / 4))= 2 / (2 * Tan(0.785))= 2 / (2 * 0.999)= 2 / 1.998Апофема (А) = 1. Шаг 2: Найдем периметр.Периметр (P) = (N * (длина стороны) = 4 * 2 = 8 Шаг 3: Найдем площадь.Площадь = (A * P) / 2= (1 * 8) / 2= 8 / 2Площадь = 4.

Приведенные выше примеры показывают, как вычислить площадь и периметр многоугольника вручную.

Правильный многоугольник

S tan⁡〖(180°)/n〗)/n)/2 tan⁡〖(180°)/n〗=√(S/(n tan⁡〖(180°)/n〗)) R=a/(2 sin⁡〖(180°)/n〗)=√((4S tan⁡〖(180°)/n〗)/n)/2 sin⁡〖(180°)/n〗=√(S/(n cos⁡〖(180°)/n〗)) Вычислить периметр правильного многоугольника через площадь возможно, если представить его в виде произведения количества сторон n на полученный вместо стороны радикал, а затем упростить выражение, внеся n под корень. P=na=n√((4S tan⁡〖(180°)/n〗)/n)=√(4nS tan⁡〖(180°)/n〗) Угол правильного многоугольника можно вычислить по формуле, которая имеет только одну переменную – количество сторон фигуры, поэтому не требует никаких изменений.

Калькулятор площади многоугольника

Подставляя вместо n количество сторон фигуры можно получить формулу для определения площади любого правильного полигона, которая будет представлять собой площадь квадрата a^2, умноженного на определенный коэффициент.

Интересно, что при увеличении количества углов этот коэффициент также будет увеличиваться, к примеру, для пентагона - 1,72, а гексагона - 2,59. Так как около любого правильного полигона можно описать окружность или вписать ее в него, мы можем использовать соответствующие радиусы для вычисления площадей многоугольников.

Сторона и радиус описанной окружности для любого полигона соотносятся как: a = R × 2 sin (pi/n), где R – радиус описанной окружности, n – количество сторон геометрической фигуры.

Для вписанной в полигон окружности соотношение немного изменяется и выглядит как: a = r × 2 tg (pi/n), где r – радиус вписанной окружности.

Как рассчитать площадь правильного многоугольника

Пример многоугольникаДанный калькулятор обсчитывает площадь многоугольника по введенным сторонами и диагоналям, разбивающим многоугольник на непересекающиеся треугольники.

Смотрим на картинку - площадь многоугольника ABCDE можно вычислить как сумму площадей треугольников ABD, BCD и ADE.

Для этого, понятно, помимо длин сторон многоугольника, надо знать еще и длины диагоналей BD и AD, но это и все что нужно - площадь любого треугольника можно вычислить только по длинам его сторон, без измерения углов.

А это довольно удобно, например, при бытовом ремонте - длины-то всяко проще померять, чем углы.

Итак, измеряем длины сторон интересующего нас многоугольника, заносим их в таблицу, мысленно разбиваем многоугольник на треугольники, измеряем нужные диагонали, также заносим их в таблицу, после чего калькулятор рассчитывает площадь всей фигуры.

Как узнать площадь многоугольника?

Как поступить с правильным многоугольником, у которого больше четырех вершин? Для начала такая фигура характеризуется тем, что в ней все стороны равны. Плюс к этому, у многоугольника одинаковые углы. Если вокруг такой фигуры описать окружность, то ее радиус совпадет с отрезком от центра многоугольника до одной из вершин. Поэтому для того чтобы вычислить площадь правильного многоугольника с произвольным числом вершин, потребуется такая формула: Sn = 1/2 * n * Rn2 * sin (360º/n), где n - количество вершин многоугольника.
Таким образом, для определения площади любого правильного полигона вам понадобится указать количество сторон n и любой параметр на выбор:

  • длина стороны a;
  • радиус вписанной окружности r;
  • радиус описанной окружности R.

Рассмотрим пару примеров для нахождения площади любого многоугольника.

Примеры из жизни Пчелиные соты Пчелиные соты - уникальный природный объект, который состоит из множества гексагональных призматических ячеек.

Давайте подсчитаем, сколько таких шестиугольников находится в одних сотах.

Для этого нам нужно узнать общую площадь и площадь одной ячейки.

Из Википедии мы знаем, что стандартная рамка для сот имеет размеры 435 х 300 мм, соответственно, общая площадь составляет 130 500 квадратных миллиметров.

Там же указано, что горизонтальный диаметр одной ячейки составляет примерно 5,5 мм.

Диагональ 2 Угол α {$ main.angles $} Угол β {$ main.angles $} Введите любые 3 величины Сторона A Сторона B Высота ha Высота hb Диагональ 1 Диагональ 2 Угол α {$ main.angles $} Угол β {$ main.angles $} Введите любые 3 величины Основание A Основание C Высота H Дополните боковые стороны для поиска периметра Сторона B Сторона D Введите 1 величину Сторона A Радиус описанной окружности (R) Радиус вписанной окружности (r) Количество сторон многоугольника Введите 1 величину Сторона A Радиус описанной окружности (R) Радиус вписанной окружности (r) Введите 1 величину Сторона A = радиусу описанной окружности (R) Радиус вписанной окружности (r) Результат расчета

  • Периметр: {$ result.p|number:4 $}
  • Площать: {$ result.s|number:4 $}

Многоугольник или полигон - геометрическая фигура, которая имеет n-ное количество углов.
В общем случае многоугольник - это часть плоскости, которая ограничена замкнутой ломанной.

Геометрия многоугольников В целом такая геометрическая фигура может иметь абсолютно любой вид.

К примеру, символы звезды и компаса, полигон для моделирования или грань шестеренки - многоугольники.

Многоугольные фигуры разделяются на две группы:

  • невыпуклые, которые имеют любую причудливую форму с возможными самопересечениями (самый очевидный пример - звезда);
  • выпуклые, все точки которых находятся по одну сторону от прямой, проведенной через две соседние вершины (квадрат, треугольник).

Выпуклый полигон, у которого все углы равны и все стороны равны, считается правильным и имеет собственное название.

В задачах по геометрии часто требуется вычислить площадь многоугольника. Причем он может иметь довольно разнообразную форму - от всем знакомого треугольника до некоторого n-угольника с каким-то невообразимым числом вершин. К тому же эти многоугольники бывают выпуклыми или вогнутыми. В каждой конкретной ситуации полагается отталкиваться от внешнего вида фигуры. Так получится выбрать оптимальный путь решения задачи. Фигура может оказаться правильной, что существенно упростит решение задачи.

Немного теории о многоугольниках

Если провести три или более пересекающихся прямых, то они образуют некоторую фигуру. Именно она является многоугольником. По количеству точек пересечения становится ясно, сколько вершин у него будет. Они дают название получившейся фигуре. Это может быть:

Такая фигура непременно будет характеризоваться двумя положениями:

  1. Смежные стороны не принадлежат одной прямой.
  2. У несмежных отсутствуют общие точки, то есть они не пересекаются.

Чтобы понять, какие вершины являются соседними, потребуется посмотреть, принадлежат ли они одной стороне. Если да, то соседние. В противном случае их можно будет соединить отрезком, который необходимо назвать диагональю. Их можно провести только в многоугольниках, у которых больше трех вершин.

Какие их виды существуют?

Многоугольник, у которого больше четырех углов, может быть выпуклым или вогнутым. Отличие последнего в том, что некоторые его вершины могут лежать по разные стороны от прямой, проведенной через произвольную сторону многоугольника. В выпуклом всегда все вершины лежат с одной стороны от такой прямой.

В школьном курсе геометрии большая часть времени уделяется именно выпуклым фигурам. Поэтому в задачах требуется узнать площадь выпуклого многоугольника. Тогда существует формула через радиус описанной окружности, которая позволяет найти искомую величину для любой фигуры. В других случаях однозначного решения не существует. Для треугольника формула одна, а для квадрата или трапеции совершенно другие. В ситуациях, когда фигура неправильная или вершин очень много, принято разделять их на простые и знакомые.

Как поступить, если фигура имеет три или четыре вершины?

В первом случае он окажется треугольником, и можно воспользоваться одной из формул:

  • S = 1/2 * а * н, где а — сторона, н — высота к ней;
  • S = 1/2 * а * в * sin (А), где а, в — сторон\ы треугольника, А — угол между известными сторонами;
  • S = √(p * (p - а) * (p - в) * (p - с)), где с — сторона треугольника, к уже обозначенным двум, р — полупериметр, то есть сумма всех трех сторон, разделенная на два.

Фигура с четырьмя вершинами может оказаться параллелограммом:

  • S = а * н;
  • S = 1/2 * d 1 * d 2 * sin(α), где d 1 и d 2 — диагонали, α — угол между ними;
  • S = a * в * sin(α).

Формула для площади трапеции: S = н * (a + в) / 2, где а и в — длины оснований.

Как поступить с правильным многоугольником, у которого больше четырех вершин?

Для начала такая фигура характеризуется тем, что в ней все стороны равны. Плюс к этому, у многоугольника одинаковые углы.

Если вокруг такой фигуры описать окружность, то ее радиус совпадет с отрезком от центра многоугольника до одной из вершин. Поэтому для того чтобы вычислить площадь правильного многоугольника с произвольным числом вершин, потребуется такая формула:

S n = 1/2 * n * R n 2 * sin (360º/n), где n — количество вершин многоугольника.

Из нее легко получить такую, которая пригодится для частных случаев:

  1. треугольника: S = (3√3)/4 * R 2 ;
  2. квадрата: S = 2 * R 2 ;
  3. шестиугольника: S = (3√3)/2 * R 2 .

Ситуация с неправильной фигурой

Выходом для того, как узнать площадь многоугольника, если он не является правильным и его нельзя отнести ни к одной из известных ранее фигур, является алгоритм:

  • разбить его на простые фигуры, например, треугольники, чтобы они не пересекались;
  • вычислить их площади по любой формуле;
  • сложить все результаты.

Что делать, если в задаче даны координаты вершин многоугольника?

То есть известен набор пар чисел для каждой точки, которые ограничивают стороны фигуры. Обычно они записываются как (x 1 ; y 1) для первой, (x 2 ; y 2) — для второй, а n-ая вершина имеет такие значения (x n ; y n). Тогда площадь многоугольника определяется, как сумма n слагаемых. Каждое из них выглядит так: ((y i+1 +y i)/2) * (x i+1 - x i). В этом выражении i изменяется от единицы до n.

Стоит отметить, что знак результата будет зависеть от обхода фигуры. При использовании указанной формулы и движении по часовой стрелке ответ будет получаться отрицательным.

Пример задачи

Условие. Координаты вершин заданы такими значениями (0.6; 2.1), (1.8; 3.6), (2.2; 2.3), (3.6; 2.4), (3.1; 0.5). Требуется вычислить площадь многоугольника.

Решение. По формуле, указанной выше, первое слагаемое будет равно (1.8 + 0.6)/2 * (3.6 - 2.1). Здесь нужно просто взять значения для игрека и икса от второй и первой точек. Несложный расчет приведет к результату 1.8.

Второе слагаемое аналогично получается: (2.2 + 1.8)/2 * (2.3 - 3.6) = -2.6. При решении подобных задач не стоит пугаться отрицательных величин. Все идет так, как нужно. Это планомерно.

Подобным образом получаются значения для третьего (0.29), четвертого (-6.365) и пятого слагаемых (2.96). Тогда итоговая площадь равна: 1.8 + (-2.6) + 0.29 + (-6.365) + 2.96 = - 3.915.

Совет по решению задачи, для которой многоугольник изображен на бумаге в клетку

Чаще всего озадачивает то, что в данных имеется только размер клеточки. Но оказывается, что больше сведений не нужно. Рекомендацией к решению такой задачи является разбивание фигуры на множество треугольников и прямоугольников. Их площади довольно просто сосчитать по длинам сторон, которые потом легко сложить.

Но часто есть более простой подход. Он заключается в том, чтобы дорисовать фигуру до прямоугольника и вычислить значение его площади. Потом сосчитать площади тех элементов, которые оказались лишними. Вычесть их из общего значения. Этот вариант порой предполагает несколько меньшее число действий.

Содержимое:

Очень легко вычислить площадь правильного треугольника (это многоугольник!) и очень непросто сделать это в случае неправильного одиннадцатиугольника (это тоже многоугольник!). Данная статья расскажет вам, как вычислять площадь различных многоугольников.

Шаги

1 Вычисление площади правильного многоугольника по апофеме

  1. 1 Формула для нахождения площади правильного многоугольника: Площадь = 1/2 х периметр х апофема.
    • Периметр – сумма сторон многоугольника.
    • Апофема – отрезок, соединяющий центр многоугольника и середину любой из его сторон (апофема перпендикулярна стороне).
  2. 2 Найдите апофему. Она, как правило, дана в условии задачи. Например, дан шестиугольник, апофема которого равна 10√3.
  3. 3 Найдите периметр. Если периметр не дан в условии задачи, то его можно найти по известной апофеме.
    • Шестиугольник можно разбить на 6 равносторонних треугольников. Апофема делит одну сторону пополам, создавая прямоугольный треугольник с углами 30-60-90 градусов.
    • В прямоугольном треугольнике сторона, противолежащая углу в 60 градусов, равна x√3; углу в 30 градусов равна «х»; углу 90 градусов равна 2x. Если значение стороны x√3 равно 10√3, то х = 10.
    • «х» – это половина длины основания треугольника. Удвойте ее и найдете полную длину основания. В нашем примере основание треугольника равно 20 единицам. В свою очередь основание треугольника есть сторона шестиугольника. Таким образом, периметр шестиугольника равен 20 х 6 = 120.
  4. 4 Подставьте значения апофемы и периметра в формулу. В нашем примере:
    • площадь = 1/2 х 120 х 10√3
    • площадь = 60 х 10√3
    • площадь = 600√3
  5. 5 Упростите ответ. Возможно, вам придется записать ответ в виде десятичной дроби (то есть избавиться от корня). С помощью калькулятора найдите √3 и полученное число умножьте на 600: √3 х 600 = 1039,2. Это ваш окончательный ответ.

2 Вычисление площади правильного многоугольника по другим формулам

  1. 1 . Формула: Площадь = 1/2 х основание х высота.
    • Если вам дан треугольник с основанием 10 и высотой 8, то его площадь = 1/2 х 8 х 10 = 40.
  2. 2 . Чтобы найти площадь квадрата, просто возведите в квадрат длину одной его стороны. Если умножить основание квадрата на его высоту, мы получим тот же ответ, так как основание и высота равны.
    • Если сторона квадрата равна 6, то его площадь = 6 х 6 = 36.
  3. 3 . Формула: Площадь = длина х ширина.
    • Если длина прямоугольника равна 4, а ширина равна 3, то его площадь = 4 х 3 = 12.
  4. 4 . Формула: Площадь = [(основание1 + основание2) х высота] / 2.
    • Например, дана трапеция с основаниями 6 и 8 и высотой 10. Ее площадь = [(6 + 8) 10]/2 = (14 х 10)/2 = 140/2 = 70.

3 Вычисление площади неправильного многоугольника

  1. 1 Используйте координаты вершин неправильного многоугольника. Зная координаты вершин, можно определить площадь неправильного многоугольника.
  2. 2 Сделайте таблицу. Запишите координаты вершин (х,у) (вершины выбирать последовательно в направлении против часовой стрелки). В конце списка еще раз напишите координату первой вершины.
  3. 3 Умножьте значение координаты «х» первой вершины на значение координаты «у» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна 82).
  4. 4 Умножьте значение координаты «у» первый вершины на значение координаты «х» второй вершины (и так далее). Сложите результаты (в нашем примере сумма равна -38).
  5. 5 Вычтите сумму, полученную в шаге 4, из суммы, полученной в шаге 3. В нашем примере: (82) - (-38) = 120.
  6. 6 Разделите полученный результат на 2, чтобы найти площадь многоугольника: S=120/2 = 60 (квадратных единиц).
  • Если вы записываете координаты вершин в направлении по часовой стрелке, вы получите отрицательную площадь. Таким образом, это можно использовать для описания цикла или последовательности данного набора вершин, формирующих многоугольник.
  • Данная формула находит площадь с учетом формы многоугольника. Если многоугольник имеет форму цифры 8, то необходимо из площади с вершинами против часовой стрелки вычесть площадь с вершинами по часовой стрелке.