Лекция на тему: "Периодическая система химических элементов Д. Менделеева"

Графическим отображением периодического закона является Периодическая система химических элементов. Известно более \(700\) форм периодической таблицы. Официальным по решению Международного союза химиков является её полудлинный вариант.

Каждому химическому элементу в таблице отведена одна клеточка, в которой указаны символ и название элемента, порядковый номер и относительная атомная масса.

Ломаная линия обозначает границу между металлами и неметаллами.

Последовательность расположения элементов не всегда совпадает с возрастанием атомной массы. Есть несколько исключений из правила. Так, относительная атомная масса аргона меньше атомной массы калия, в теллура - меньше, чем иода.

Каждый элемент имеет свой порядковый (атомный) номер , располагается в определённом периоде и определённой группе.

Период - горизонтальный ряд химических элементов, начинающийся щелочным металлом (или водородом) и заканчивающийся инертным (благородным) газом.

В таблице семь периодов. В каждом содержится определённое число элементов:

\(1\)-й период - \(2\) элемента,

\(2\)-й период - \(8\) элементов,

\(3\)-й период - \(8\) элементов,

\(4\)-й период - \(18\) элементов,

\(5\)-й период - \(18\) элементов,

\(6\)-й период - \(32\) элемента (\(18 + 14\)),

\(7\)-й период - \(32\) элемента (\(18 + 14\)).

Три первых периода называют малыми периодами, остальные - большими . И в малых, и в больших периодах происходит постепенное ослабление металлических свойств и усиление неметаллических , только в больших периодах оно происходит более плавно.

Элементы с порядковыми номерами \(58\)–\(71\) (лантаноиды ) и \(90\)–\(103\) (актиноиды ) вынесены из таблицы и располагаются под ней. Это элементы IIIB группы. Лантаноиды относятся к шестому периоду, а актиноиды - к седьмому .

Восьмой период появится в Периодической таблице, когда будут открыты новые элементы.

Группа - вертикальный столбец химических элементов, имеющих сходные свойства.

В Периодической таблице \(18\) групп, пронумерованных арабскими цифрами. Часто используют нумерацию римскими цифрами с добавлением букв \(A\) или \(B\). В таком случае групп \(8\).

Группы \(A\) начинаются элементами малых периодов, включают также и элементы больших периодов; содержат и металлы, и неметаллы. В коротком варианте Периодической таблицы это главные подгруппы .

Группы \(B\) содержат элементы больших периодов, и это только металлы. В коротком варианте Периодической таблицы это побочные подгруппы .

Число элементов в группах:

IA , VIIIA - по \(7\) элементов;

IIA - VIIA - по \(6\) элементов;

IIIB - \(32\) элемента (\(4 + 14\) лантаноидов \(+ 14\) актиноидов);

VIIIB - \(12\) элементов;

IB , IIB , IVB - VIIB - по \(4\) элемента.

Количественный состав групп будет изменяться по мере добавления в таблицу новых элементов.

Римский номер группы, как правило, показывает высшую валентность в оксидах. Но для некоторых элементов это правило не выполняется. Так, фтор не бывает семивалентным, а кислород - шестивалентным. Не проявляют валентность, равную номеру группы,гелий , неон и аргон - эти элементы не образуют соединений с кислородом. Медь бывает двухвалентной, а золото - трёхвалентным, хотя это элементы первой группы.

Как пользоваться таблицей Менделеева?Для непосвященного человека читать таблицу Менделеева – все равно, что для гнома смотреть на древние руны эльфов. А таблица Менделеева, между прочим, если ей правильно пользоваться, может рассказать о мире очень многое. Помимо того, что сослужит Вам службу на экзамене, она еще и просто незаменима при решении огромного количества химических и физических задач. Но как ее читать? К счастью, сегодня этому искусству может научиться каждый. В этой статье расскажем, как понять таблицу Менделеева.

Периодическая система химических элементов (таблица Менделеева) – это классификация химических элементов, которая устанавливает зависимость различных свойств элементов от заряда атомного ядра.

История создания Таблицы

Дмитрий Иванович Менделеев был не простым химиком, если кто-то так думает. Это был химик, физик, геолог, метролог, эколог, экономист, нефтяник, воздухоплаватель, приборостроитель и педагог. За свою жизнь ученый успел провести фундаментально много исследований в самых разных областях знаний. Например, широко распространено мнение, что именно Менделеев вычислил идеальную крепость водки – 40 градусов. Не знаем, как Менделеев относился к водке, но точно известно, что его диссертация на тему «Рассуждение о соединении спирта с водой» не имела к водке никакого отношения и рассматривала концентрации спирта от 70 градусов. При всех заслугах ученого, открытие периодического закона химических элементов – одного их фундаментальных законов природы, принесло ему самую широкую известность.

Существует легенда, согласно которой периодическая система приснилась ученому, после чего ему осталось лишь доработать явившуюся идею. Но, если бы все было так просто.. Данная версия о создании таблицы Менделеева, по-видимому, не более чем легенда. На вопрос о том, как была открыта таблица, сам Дмитрий Иванович отвечал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово»

В середине девятнадцатого века попытки упорядочить известные химические элементы (известно было 63 элемента) параллельно предпринимались несколькими учеными. Например, в 1862 году Александр Эмиль Шанкуртуа разместил элементы вдоль винтовой линии и отметил циклическое повторение химических свойств. Химик и музыкант Джон Александр Ньюлендс предложил свой вариант периодической таблицы в 1866 году. Интересен тот факт, что в расположении элементов ученый пытался обнаружить некую мистическую музыкальную гармонию. В числе прочих попыток была и попытка Менделеева, которая увенчалась успехом.

В 1869 году была опубликована первая схема таблицы, а день 1 марта 1869 года считается днем открытия периодического закона. Суть открытия Менделеева состояла в том, что свойства элементов с ростом атомной массы изменяются не монотонно, а периодически. Первый вариант таблицы содержал всего 63 элемента, но Менделеев предпринял ряд очень нестандартных решений. Так, он догадался оставлять в таблице место для еще неоткрытых элементов, а также изменил атомные массы некоторых элементов. Принципиальная правильность закона, выведенного Менделеевым, подтвердилась очень скоро, после открытия галлия, скандия и германия, существование которых было предсказано ученым.

Современный вид таблицы Менделеева

Ниже приведем саму таблицу

Сегодня для упорядочения элементов вместо атомного веса (атомной массы) используется понятие атомного числа (числа протонов в ядре). В таблице содержится 120 элементов, которые расположены слева направо в порядке возрастания атомного числа (числа протонов)

Столбцы таблицы представляют собой так называемые группы, а строки – периоды. В таблице 18 групп и 8 периодов.

  • Металлические свойства элементов при движении вдоль периода слева направо уменьшаются, а в обратном направлении – увеличиваются.
  • Размеры атомов при перемещении слева направо вдоль периодов уменьшаются.
  • При движении сверху вниз по группе увеличиваются восстановительные металлические свойства.
  • Окислительные и неметаллические свойства при движении вдоль периода слева направо увеличиваютс я.

Что мы узнаем об элементе по таблице? Для примера, возьмем третий элемент в таблице – литий, и рассмотрим его подробно.

Первым делом мы видим сам символ элемента и его название под ним. В верхнем левом углу находится атомный номер элемента, в порядке которого элемент расположен в таблице. Атомный номер, как уже было сказано, равен числу протонов в ядре. Число положительных протонов, как правило, равно числу отрицательных электронов в атоме (за исключением изотопов).

Атомная масса указана под атомным числом (в данном варианте таблицы). Если округлить атомную массу до ближайшего целого, мы получим так называемое массовое число. Разность массового числа и атомного числа дает количество нейтронов в ядре. Так, число нейтронов в ядре гелия равно двум, а у лития – четырем.

Вот и закончился наш курс "Таблица Менделеева для чайников". В завершение, предлагаем Вам посмотреть тематическое видео, и надеемся, что вопрос о том, как пользоваться периодической таблицей Менделеева, стал Вам более понятен. Напоминаем, что изучать новый предмет всегда эффективнее не одному, а при помощи опытного наставника. Именно поэтому, никогда не стоит забывать о , которые с радостью поделятся с Вами своими знаниями и опытом.

Любой, кто ходил в школу, помнит, что одним из обязательных для изучения предметов была химия. Она могла нравиться, а могла и не нравиться – это не важно. И вполне вероятно, что многие знания по этой дисциплине уже забыты и в жизни не применяются. Однако таблицу химических элементов Д. И. Менделеева наверняка помнит каждый. Для многих она так и осталась разноцветной таблицей, где в каждый квадратик вписаны определённые буквы, обозначающие названия химических элементов. Но здесь мы не будем говорить о химии как таковой, и описывать сотни химических реакций и процессов, а расскажем о том, как вообще появилась таблица Менделеева – эта история будет интересна любому человеку, да и вообще всем тем, кто охоч до интересной и полезной информации.

Небольшая предыстория

В далёком 1668 году выдающимся ирландским химиком, физиком и богословом Робертом Бойлем была опубликована книга, в которой было развенчано немало мифов об алхимии, и в которой он рассуждал о необходимости поиска неразложимых химических элементов. Учёный также привёл их список, состоящий всего из 15 элементов, но допускал мысль о том, что могут быть ещё элементы. Это стало отправной точкой не только в поиске новых элементов, но и в их систематизации.

Сто лет спустя французским химиком Антуаном Лавуазье был составлен новый перечень, в который входили уже 35 элементов. 23 из них позже были признаны неразложимыми. Но поиск новых элементов продолжался учёными по всему миру. И главную роль в этом процессе сыграл знаменитый русский химик Дмитрий Иванович Менделеев – он впервые выдвинул гипотезу о том, что между атомной массой элементов и их расположением в системе может быть взаимосвязь.

Благодаря кропотливому труду и сопоставлению химических элементов Менделеев смог обнаружить связь между элементами, в которой они могут быть одним целым, а их свойства являются не чем-то само собой разумеющимся, а представляют собой периодически повторяющееся явление. В итоге, в феврале 1869 года Менделеев сформулировал первый периодический закон, а уже в марте его доклад «Соотношение свойств с атомным весом элементов» был представлен на рассмотрение Русского химического общества историком химии Н. А. Меншуткиным. Затем в том же году публикация Менделеева была напечатана в журнале «Zeitschrift fur Chemie» в Германии, а в 1871 году новую обширную публикацию учёного, посвящённую его открытию, опубликовал другой немецкий журнал «Annalen der Chemie».

Создание периодической таблицы

Основная идея к 1869 году уже была сформирована Менделеевым, причём за довольно короткое время, но оформить её в какую-либо упорядоченную систему, наглядно отображающую, что к чему, он долго не мог. В одном из разговоров со своим соратником А. А. Иностранцевым он даже сказал, что в голове у него уже всё сложилось, но вот привести всё к таблице он не может. После этого, согласно данным биографов Менделеева, он приступил к кропотливой работе над своей таблицей, которая продолжалась трое суток без перерывов на сон. Перебирались всевозможные способы организации элементов в таблицу, а работа была осложнена ещё и тем, что в тот период наука знала ещё не обо всех химических элементах. Но, несмотря на это, таблица всё же была создана, а элементы систематизированы.

Легенда о сне Менделеева

Многие слышали историю, что Д. И. Менделееву его таблица приснилась. Эта версия активно распространялась вышеупомянутым соратником Менделеева А. А. Иностранцевым в качестве забавной истории, которой он развлекал своих студентов. Он говорил, что Дмитрий Иванович лёг спать и во сне отчётливо увидел свою таблицу, в которой все химические элементы были расставлены в нужном порядке. После этого студенты даже шутили, что таким же способом была открыта 40° водка. Но реальные предпосылки для истории со сном всё же были: как уже упоминалось, Менделеев работал над таблицей без сна и отдыха, и Иностранцев однажды застал его уставшим и вымотанным. Днём Менделеев решил немного передохнуть, а некоторое время спустя, резко проснулся, сразу же взял листок бумаги и изобразил на нём уже готовую таблицу. Но сам учёный опровергал всю эту историю со сном, говоря: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово». Так что легенда о сне может быть и очень привлекательна, но создание таблицы стало возможным только благодаря упорному труду.

Дальнейшая работа

В период с 1869 по 1871 годы Менделеев развивал идеи периодичности, к которым склонялось научное сообщество. И одним из важных этапов данного процесса стало понимание того, что любой элемент в системе должно располагать, исходя из совокупности его свойств в сравнении со свойствами остальных элементов. Основываясь на этом, а также опираясь на результаты исследований в изменении стеклообразующих оксидов, химику удалось внести поправки в значения атомных масс некоторых элементов, среди которых были уран, индий, бериллий и другие.

Пустые клетки, остававшиеся в таблице, Менделеев, конечно же, хотел скорее заполнить, и в 1870 году предсказал, что в скором времени будут открыты неизвестные науке химические элементы, атомные массы и свойства которых он сумел вычислить. Первыми из них стали галлий (открыт в 1875 году), скандий (открыт в 1879 году) и германий (открыт в 1885 году). Затем прогнозы продолжили реализовываться, и были открыты ещё восемь новых элементов, среди которых: полоний (1898 год), рений (1925 год), технеций (1937 год), франций (1939 год) и астат (1942-1943 годы). Кстати, в 1900 году Д. И. Менделеев и шотландский химик Уильям Рамзай пришли к мнению, что в таблицу должны быть включены и элементы нулевой группы – до 1962 года они назывались инертными, а после – благородными газами.

Организация периодической системы

Химические элементы в таблице Д. И. Менделеева расположены по рядам, в соответствии с возрастанием их массы, а длина рядов подобрана так, чтобы находящиеся в них элементы имели схожие свойства. Например, благородные газы, такие как радон, ксенон, криптон, аргон, неон и гелий с трудом вступают в реакции с другими элементами, а также имеют низкую химическую активность, из-за чего расположены в крайнем правом столбце. А элементы левого столбца (калий, натрий, литий и т.д.) отлично реагируют с прочими элементами, а сами реакции носят взрывной характер. Говоря проще, внутри каждого столбца элементы имеют подобные свойства, варьирующиеся при переходе от одного столбца к другому. Все элементы, вплоть до №92 встречаются в природе, а с №93 начинаются искусственные элементы, которые могут быть созданы лишь в лабораторных условиях.

В своём первоначальном варианте периодическая система понималась только как отражение существующего в природе порядка, и никаких объяснений, почему всё должно обстоять именно так, не было. И лишь когда появилась квантовая механика, истинный смысл порядка элементов в таблице стал понятен.

Уроки творческого процесса

Говоря о том, какие уроки творческого процесса можно извлечь из всей истории создания периодической таблицы Д. И. Менделеева, можно привести в пример идеи английского исследователя в области творческого мышления Грэма Уоллеса и французского учёного Анри Пуанкаре. Приведём их вкратце.

Согласно исследованиям Пуанкаре (1908 год) и Грэма Уоллеса (1926 год), существует четыре основных стадии творческого мышления:

  • Подготовка – этап формулирования основной задачи и первые попытки её решения;
  • Инкубация – этап, во время которого происходит временное отвлечение от процесса, но работа над поиском решения задачи ведётся на подсознательном уровне;
  • Озарение – этап, на котором находится интуитивное решение. Причём, найтись это решение может в абсолютно не имеющей к задаче ситуации;
  • Проверка – этап испытаний и реализации решения, на котором происходит проверка этого решения и его возможное дальнейшее развитие.

Как мы видим, в процессе создания своей таблицы Менделеев интуитивно следовал именно этим четырём этапам. Насколько это эффективно, можно судить по результатам, т.е. по тому, что таблица была создана. А учитывая, что её создание стало огромным шагом вперёд не только для химической науки, но и для всего человечества, приведённые выше четыре этапа могут быть применимы как к реализации небольших проектов, так и к осуществлению глобальных замыслов. Главное помнить, что ни одно открытие, ни одно решение задачи не могут быть найдены сами по себе, как бы ни хотели мы увидеть их во сне и сколько бы ни спали. Чтобы что-то получилось, не важно, создание это таблицы химических элементов или разработка нового маркетинг-плана, нужно обладать определёнными знаниями и навыками, а также умело использовать свои потенциал и упорно работать.

Мы желаем вам успехов в ваших начинаниях и успешной реализации задуманного!

Элементы в периодической системе располагаются в последовательности возрастания порядковых номеров Z от 1 до 110. Порядковый номер элемента Z соответствует заряду ядра его атома, а также числу движущихся в поле ядра электронов.

Химические элементы по структуре невозбужденных атомов подразделяются на естественные совокупности, что отражено в периодической системе в виде горизонтальных и вертикальных рядов – периодов и групп.

Период представляет собой последовательный ряд элементов, в атомах которых происходит заполнение одинакового числа энергетических уровней (электронных слоев). Номер периода указывает на число электронных слоев в атомах элементов. Периоды начинаются s-элементами, в атомах которых на новом уровне появляется первый s – электрон с новым значением главного квантового числа n (водород и щелочные металлы), а заканчиваются р – элементами, атомами благородных газов, имеющих устойчивую электронную структуру внешнего уровня ns 2 np 6 (у первого периода – s – элементом 2 He).

Различие в последовательности заполнения электронных слоев (внешних и более близких к ядру) объясняет причину различной длины периодов. 1,2,3 периоды – малые, 4,5,6,7 – большие периоды. Малые периоды содержат 2 и 8 элементов, большие периоды – 18 и 32 элемента, седьмой период остается незавершенным, хотя конструктивно он построен аналогично шестому периоду.

В соответствии с максимальным числом электронов на внешнем уровне невозбужденных атомов элементы периодической системы подразделяются на восемь групп. Группы элементов – это совокупность элементов с одинаковым количеством валентных электронов в атоме. Номер группы равен числу валентных электронов.

Положение в группах s- и p- элементов определяется общим числом электронов внешнего слоя. Например, фосфор (), имеющий на внешнем слое пять электронов, относится кV группе, аргон () – кVIII, кальций () – коII группе и т. д.

Положение в группах d – элементов обусловливается общим числом s – электронов внешнего и d – электронов предвнешнего уровня. По этому признаку первые шесть элементов каждого семейства d – элементов располагаются в одной из соответствующих групп: скандий вIII, марганец вVII, железо вVIII и т. д. Цинк , у которого предвнешний слой завершен и внешними являются- электроны, относится коII группе. В атомах d – элементов, как правило, на внешнем уровне содержится по два электрона, за исключением Cr, Cu, Nb, Mo, Ru, Rh, Ag, Pt, Au. У последних наблюдается энергетически выгодный «провал» одного электрона с внешнего уровня на d – подуровень предвнешнего уровня, что происходит при достройке этого подуровня до пяти (половинная емкость) или десяти электронов (максимальная емкость), т. е. до состояния, когда все орбитали заняты каждая одним электроном или когда они заняты каждая парой электронов. В атоме палладия (Pd) происходит «двойной провал» электронов.

По наличию на внешнем слое лишь одного электрона (за счет «провала» одного из s – электронов внешнего слоя в предвнешний d – подслой) медь (), а также сереброи золотоотносят кI группе. Кобальт и никель, родийи палладий, иридийи платинувместе сFe, Ru, и Os обычно помещают в VIII группу.

В соответствии с особенностями электронных структур семейства 4f – (лантаноиды) и 5f – (актиноиды) элементов помещают в III группу.

Группы делятся на подгруппы: главные (подгруппы А) и побочные (подгруппы В). Подгруппы включают в себя элементы с аналогичными электронными структурами (элементы - аналоги). s - и р – элементы составляют так называемую главную подгруппу, или подгруппу А, d – элементы – побочную, или подгруппу В.

Например, IV группа периодической системы состоит из следующих подгрупп:

Элементы главной подгруппы (А)

Попытки систематизировать химические элементы предпринимали многие ученые. Но только в 1869 году Д. И. Менделееву удалось создать классификацию элементов, которая устанавливала связь и зависимость химических веществ и заряда атомного ядра.

История

Современная формулировка периодического закона заключается в следующем: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элемента.

К моменту открытия закона было известно 63 химических элемента. Однако атомные массы многих из этих элементов были определены ошибочно.

Сам Д. И Менделеев в 1869 году сформулировал свой закон как периодическую зависимость от величины атомных весов элементов, так как в XIX веке наука еще не имела сведений о строении атома. Однако гениальное предвидение ученого позволило ему более глубоко, чем все его современники, понять закономерности, которые обуславливают периодичность свойств элементов и веществ. Он учитывал не только возрастание атомной массы, но и уже известные свойства веществ и элементов и, взяв за основу идею периодичности, смог совершенно точно предсказать существование и свойства неизвестных на тот момент науке элементов и веществ, исправить атомные массы ряда элементов, правильно расположить элементы в системе, оставив пустые места и сделав перестановки.

Рис. 1. Д. И. Менделеев.

Существует миф, что периодическая система приснилась Менделееву. Однако это только красивая история, которая не является доказанным фактом.

Структура периодической системы

Периодическая система химических элементов Д. И. Менделеева является графическим отражением его же закона. Элементы расположены в таблице по определенному химическому и физическому смыслу. По расположению элемента можно определить его валентность, число электронов и многие другие особенности. Таблица поделена горизонтально на большие и малые периоды, а вертикально на группы.

Рис. 2. Таблица Менделеева.

Существует 7 периодов, которые начинаются с щелочного металла, а заканчиваются веществами, имеющими неметаллические свойства. Группы, в свою очередь, состоящие из 8 столбцов, поделены на главные и побочные подгруппы.

Дальнейшее развитие науки показало, что периодическое повторение свойств элементов через определенные интервалы, особенно отчетливо проявляющиеся во 2 и 3 малых периодах, объясняется повторением электронного строения внешних энергетических уровней, где находятся валентные электроны, за счет которых идет образование химических связей и новых веществ в реакциях. Поэтому в каждом вертикальном столбце-группе оказываются элементы с повторяющимися характерными чертами. Это ярко проявляется в группах, где находятся семейства очень активных щелочных металлов (I группа, главная подгруппа) и неметаллов-галогенов (VII группа, главная подгруппа). Слева направо по периоду число электронов возрастает от 1 до 8, при этом имеет место уменьшение металлических свойств элементов. Таким образом, металлические свойства проявляются тем сильнее, чем меньше электронов на внешнем уровне.

Рис. 3. Малые и большие периоды в таблице Менделеева.

Периодически также повторяются такие свойства атомов, как энергия ионизации, энергия сродства к электрону и электроотрицательность. Эти величины связаны со способностью атома отдать электрон с внешнего уровня (ионизация) или удержать чужой электрон на своем внешнем уровне (сродство к электрону).. Всего получено оценок: 117.